MENU

You are here

Publications

Export 475 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bianchini S, Yu L. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
Bianchini S. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
Bianchini S, Zizza M. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
Bianchini S, Bonicatto P, Marconi E. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
Bianchini S, Bonicatto P, Marconi E. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions [Internet]. 2017 ;63:418–436. Available from: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=cmfd&paperid=327&option_lang=eng
Bianchini S, Bressan A. BV solutions for a class of viscous hyperbolic systems. Indiana Univ. Math. J. 49 (2000) 1673-1714 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3194
Bianchini S, Yu L. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
Bianchini S, Bressan A. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
Bianchini S, Bardelloni M. The decomposition of optimal transportation problems with convex cost. SISSA; 2014. Available from: http://hdl.handle.net/1963/7433
Bianchini S, Cavalletti F. The Monge Problem for Distance Cost in Geodesic Spaces. Communications in Mathematical Physics [Internet]. 2013 ;318:615–673. Available from: https://doi.org/10.1007/s00220-013-1663-8
Bianchini S, Marconi E. On the structure of $L^\infty$-entropy solutions to scalar conservation laws in one-space dimension. SISSA; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35209
Bianchini S, Bressan A. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
Bianchini S, Mariconda C. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
Bianchini S. Perturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problem. SISSA; 2007. Available from: http://preprints.sissa.it/handle/1963/35315
Bianchini S. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
Bianchini S, Dabrowski A. Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34693
Bianchini S, Spinolo L. The boundary Riemann solver coming from the real vanishing viscosity approximation. Arch. Ration. Mech. Anal. 191 (2009) 1-96 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/1831
Bianchini S, Brancolini A. Estimates on path functionals over Wasserstein Spaces. SIAM J. Math. Anal. 42 (2010) 1179-1217 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3583
Bianchini S, Bonicatto P. A uniqueness result for the decomposition of vector fields in Rd. SISSA; 2017. Available from: http://preprints.sissa.it/handle/1963/35274
Bianchini S. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst. H. Poincare\\\' Anal. Non Lineaire 18 (2001), no. 1, 19-42 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1355
Bianchini S, Bonicatto P. Failure of the Chain Rule in the Non Steady Two-Dimensional Setting. In: Rassias TM Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Cham: Springer International Publishing; 2018. pp. 33–60. Available from: https://doi.org/10.1007/978-3-319-89800-1_2
Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
Bianchini S, Modena S. A New Quadratic Potential for Scalar Conservation Laws. Oberwolfach Reports. 2013 ;29.
Bianchini S, Modena S. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929

Pages

Sign in