MENU

You are here

Publications

Export 246 results:
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Altafini C, Lini G. Achieving unanimous opinions in signed social networks. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34935
Riccobelli D, Ambrosi D. Activation of a muscle as a mapping of stress–strain curves. Extreme Mech. Lett. 2019 ;28:37–42.
Eduati F, Di Camillo B, Toffolo G, Altafini C, De Palo G, Zampieri M. Adaptation as a genome-wide autoregulatory principle in the stress response of yeast. IET systems biology. 2011 Jul; 5(4):269-79 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5106
Altafini C, Ticozzi F. Almost Global Stochastic Feedback Stabilization of Conditional Quantum Dynamics.; 2006. Available from: http://hdl.handle.net/1963/1727
Abenda S. Analysis of Singularity Structures for Quasi-Integrable Hamiltonian Systems. [Internet]. 1994 . Available from: http://hdl.handle.net/1963/5685
Amato S, Tealdi L, Bellettini G. Anisotropic mean curvature on facets and relations with capillarity. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34481
Ambrosetti A, Berti M. Applications of critical point theory to homoclinics and complex dynamics. In: Discrete Contin. Dynam. Systems. Discrete Contin. Dynam. Systems. ; 1998. pp. 72–78.
Ancona F, Coclite GM. On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43 (2005) 2166-2190 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1581
Agostiniani V, Dal Maso G, DeSimone A. Attainment results for nematic elastomers. SISSA; 2013. Available from: http://hdl.handle.net/1963/7174
B
Antonini P, Azzali S, Skandalis G. The Baum–Connes conjecture localised at the unit element of a discrete group. ArXiv e-prints. 2018 .
Antonini P, Azzali S, Skandalis G. The Baum–Connes conjecture localised at the unit element of a discrete group. ArXiv e-prints. 2018 .
DeSimone A, Alouges F, Lefebvre A. Biological Fluid Dynamics, Non-linear Partial Differential Equations. In: Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. ; 2009. Available from: http://hdl.handle.net/1963/2630
Agrachev AA, Lee P. Bishop and Laplacian Comparison Theorems on Three Dimensional Contact Subriemannian Manifolds with Symmetry. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6508
Andreuzzi F. BisPy: Bisimulation in Python. Journal of Open Source Software. 2021 ;6:3519.
Adami R, Dell'Antonio G, Figari R, Teta A. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 121-137 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2998
Ambrosetti A, Colorado E. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
Ambrosetti A, Malchiodi A, Ruiz D. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
Ambrosetti A. Branching points for a class of variational operators. J. Anal. Math. 76 (1998) 321-335 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3314
C
Alberti G, Bouchitte G, Dal Maso G. The calibration method for the Mumford-Shah functional. C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 3, 249-254 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1235
Alberti G, Bouchitte G, Dal Maso G. The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differential Equations 16 (2003) 299-333 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3051
Ballarin F, Rebollo TC, Ávila ED, Marmol MG, Rozza G. Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height. Computers and Mathematics with Applications [Internet]. 2020 ;80:973-989. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085843368&doi=10.1016%2fj.camwa.2020.05.013&partnerID=40&md5=7c6596865ec89651319c7dd97159dd77
Rebollo TC, Ávila ED, Marmol MG, Ballarin F, Rozza G. On a certified smagorinsky reduced basis turbulence model. SIAM Journal on Numerical Analysis [Internet]. 2017 ;55:3047-3067. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c
Broccard FD, Pegoraro S, Ruaro ME, Altafini C, Torre V. Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity. BMC Research Notes (2009) 2:13 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3706
Altafini C. Coherent control of open quantum dynamical systems. Phys. Rev. A 70 (2004) 062321 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2227
De Palo G, Facchetti G, Mazzolini M, Menini A, Torre V, Altafini C. Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons. Nature. Scientific Reports 3, Article number: 1251, Published : 13 February 2013. 2013 .

Pages

Sign in