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Solve FIVE of the following problems. Mark in the table below the exercises you have chosen.
These exercises only will be considered for the selection.
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Mathematical Analysis

1. Consider the Cauchy problem

ẋ = f(x) , x(0) = x0 , (1)

where f : Rn → Rn is a vector field of class C1 satisfying, for some m ∈ N ,

|f(x)| ≤ |x|m , ∀x ∈ Rn .

Prove that, for any x0 ∈ Rn , the solution of (1) is defined on a time interval [0, Tmax) where

(a) if m = 1 then Tmax = +∞ ;

(b) if m ≥ 2 then there is a constant cm > 0 such that Tmax ≥ cm
|x0|m−1 , for any x0 ̸= 0, and

Tmax = +∞ if x0 = 0.

2. Prove the following facts:

(a) For any sequence of real numbers (cn)n∈N with cn → ∞ , and any set F ⊂ R with finite
measure it holds

lim
n→∞

∫
F
sin2 (cnx)dx =

λ(F )

2
,

where λ(F ) denotes the Lebesgue measure of F .

(b) Let (αn)n∈N be a sequence of real numbers such that

f(x) := lim
n→∞

sin(αnx)

exists on a set E ⊂ R of positive measure. Prove that (αn)n∈N has finite limit.

3. Let K : [0, 1]× [0, 1] → R be a measurable function satisfying

M1 := sup
x∈[0,1]

∫
[0,1]

|K(x, y)|dy < +∞

M2 := sup
y∈[0,1]

∫
[0,1]

|K(x, y)|dx < +∞ .

Prove that the integral operator A : L2([0, 1]) → L2([0, 1]) defined by

(Au)(x) :=

∫
[0,1]

K(x, y)u(y) dy

is bounded on L2([0, 1]), and

∥Au∥L2([0,1]) ≤ (M1M2)
1/2∥u∥L2([0,1]) .
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4. Let ℓ2 =

{
c = (cn)n∈N | cn ∈ C ,

∞∑
n=0

|cn|2 < +∞

}
. For all c ∈ ℓ2 , consider the power series

fc(z) :=

∞∑
n=0

cnz
n .

(a) Prove that for any c ∈ ℓ2 the function fc : D → C is holomorphic on the open unit disk
D = {z ∈ C | |z| < 1} .

(b) Let (ak)k∈N be a sequence of complex numbers in D with an accumulation point1 in D .
Consider the following vectors of ℓ2 :

hk = (1, ak, a
2
k, a

3
k, . . . ), k = 1, 2, . . . .

Show that ℓ2 = span{h1, h2, . . . } .

5. Consider T : C([0, 1]) → C([0, 1]) defined by

(Tf)(x) =

∫ 1−x

0
f(y)dy , x ∈ [0, 1] .

(a) Prove that T is a linear, bounded, compact operator on C([0, 1]).

(b) Compute the spectrum and the eigenvalues of T .

6. Let f : Rn → R be a scalar function of class C1 such that

lim
|x|→+∞

f(x) = +∞ ,

with a unique critical point x ∈ Rn . Prove that

(a) for any x0 ∈ Rn the solution x(t) of

ẋ = −(∇f)(x) , x(0) = x0 ,

is defined for all t ≥ 0;

(b) the ω -limit set

ω(x0) :=
{
y ∈ Rn | there exists a sequence tn → +∞ such that x(tn) → y

}
is contained in f−1(α) where α = inft≥0 f(x(t));

(c) ω(x0) = {x} and limt→+∞ x(t) = x .

1A point a ∈ C is an accumulation point for a sequence (ak)k∈N ⊂ C if any neighborhood of a contains
infinitely many elements of the sequence different from the point a itself.
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7. For s ≥ 0, let Hs(T) be the Hilbert space of Lebesgue-measurable, 2π -periodic functions
f : T ≡ [−π, π] → C of the form

f(x) =
∑
k∈Z

ck e
ikx, x ∈ [−π, π], (2)

where ck are complex numbers such that

∥f∥Hs =

(∑
k∈Z

(1 + |k|2)s |ck|2
)1/2

<∞.

(a) Show that if s > 1/2 then there is a positive constant Cs > 0 such that

∥f∥L∞ ≤ Cs ∥f∥Hs , (3)

and the evaluation functional

E : Hs(T) −→ C , f 7−→ E(f) = f(0) , (4)

is continuous.

(b) Prove that if s = 1/2 the embedding (3) fails for any constant C1/2 .

8. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and recall that a symmetric bounded
linear operator A on H is said to be positive semi-definite if ⟨Ax, x⟩ ≥ 0 for any x ∈ H . Let
A and B be two symmetric, bounded linear operators on H . Prove or disprove the following
statements:

(a) If ⟨Ax, x⟩ = ⟨Bx, x⟩ for any x ∈ H , then A = B on H .

(b) If A− 1 is positive semi-definite, where 1 denotes the identity on H , then A is invertible
and 1−A−1 is positive semi-definite.

(c) If A , B and A−B are positive semi-definite, then A2 −B2 is positive semi-definite.

9. Let α ∈ [0, 1]. Show that all the solutions of

ẍ+ x− sin(αx) = 0

are periodic.

10. Let X be an infinite–dimensional Banach space and consider the unit sphere:

S = {x ∈ X | ∥x∥ = 1}.

Prove that the closure S with respect to the weak topology σ(X,X∗) is the unit ball:

B = {x ∈ X | ∥x∥ ≤ 1}.
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Numerical Analysis

11. Consider the one-dimensional partial differential equation

∂Q

∂t
+A

∂Q

∂x
=0, (x, t) ∈ (−∞,+∞)× (0,+∞), (5)

Q(x, 0) =h(x), x ∈ (−∞,+∞), (6)

with

A =

 1 2 −2
−1 1 1
−1 2 0

 ∈ R3×3 and Q(x, t) ∈ R3. (7)

(a) Diagonalise the matrix A (i.e., A = RΛR−1 ).

(b) Write an equation for the variables C := R−1Q .

(c) Take advantage of the variables C and the equation associated to them to find a closed-form
solution for Q(x, t).

12. Consider the family of one-dimensional finite difference schemes defined as:

αWj−1 +Wj + αWj+1 = a

(
Uj+1 − Uj−1

2h

)
+ b

(
Uj+2 − Uj−2

4h

)
, (8)

where Uj ≈ u(xj) and Wj ≈ u′(xj) are respectively the approximation of the function u(x) and
its derivative u′(x) at the point xj .

(a) Suppose now that α = 0. Find the coefficients a and b so that the scheme in equation (8)
is fourth-order accurate (Hint: consider the Taylor expansion of u(xj+2), u(xj−2), u(xj+1)
and u(xj−1) in xj ).

(b) Consider now the case for α ̸= 0. Find again the coefficients a and b so that the scheme in
equation (8) is fourth-order accurate (Hint: consider the Taylor expansion of u′(xj+1) and
u′(xj−1) in xj ).

(c) Based on the family of numerical schemes obtained in the previous point, is it possible to
write an equation that only depends on quantities defined on the stencil (j − 1, j, j + 1)?

(d) In point (1) and in point (3) two different schemes were obtained, both fourth-order accurate:
how do we obtain Wj in the two schemes? Which one is more computationally expensive?
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13. Let A ∈ Rn×n , non-singular (invertible) matrix. Let u, v ∈ Rn ; we define the rank-1
perturbation of A as Â = A + uvT . The Sherman-Morrison formula provides the following
expression for Â−1 , if it exists:

Â−1 =
(
A+ uvT

)−1
= A−1 −

(
1

sA

)
A−1uvTA−1 with sA = 1 + vTA−1u

(a) Consider the system
(
A+ uvT

)
x = b , and define y = vTx . Write down the (n+1)×(n+1)

linear system with unknown z = [x, y]T of the form

Mz = c, with c ∈ Rn+1.

(b) Assuming that A−1 is available, find a necessary and sufficient condition for Â to be in-
vertible. (Hint: by substitution or Gaussian elimination on the last row of M.)

(c) Assume that A is such that we can solve a system of the form Ax = b in O(n) floating
point operations (flops). What is the computational cost to solve a system Âx = b̂ using
Sherman-Morrison? Indicate also the flops on each step.

14. On the interval Ω = (0, 1), consider the two-point boundary value problem

− au′′ + bu′ = f in Ω,

u(0) = u0, u
′(1) = 0,

(9)

where the coefficients a = a(x) and b = b(x) are smooth functions satisfying a(x) > 0 and
b(x) ≥ 0 in Ω, and where the real forcing function f = f(x) and boundary value u0 are given.

(a) Consider uniform partitions (grids) of Ω in N sub-intervals [xi−1, xi), i = 1, . . . , N , of
length h = 1/N . Derive the second order central finite difference discretisation operator
Ah , for (9) and write the corresponding finite difference method for the discrete solution
vector U = {Ui}Ni=0 . Show that, indeed, the truncation error for this method is of O(h2) if
the exact solution u is regular enough.

(b) Let ai = a(xi) and bi = b(xi), i = 0, 1, . . . , N . Consider for a moment the pure Dirichlet
problem obtained by replacing the right-boundary condition with u(1) = u1 . Prove that, if
h is small enough that ai ± 1

2hbi ≥ 0 and that AhUi ≤ 0 (AhUi ≥ 0), i = 1, . . . , N , then

max
i
Ui = max{U0, UN} (min

i
Ui = min{U0, UN}).

Comment on the implications of the above Discrete Maximum Principle (DMP) result on
the existence and uniqueness of the solution to the discrete scheme and on the stability of
the scheme. Now, consider again the original problem with Neumann condition at the right
boundary. What can you say about the DMP in this case?
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(c) Assume that the coefficients a and b are constant (you may also consider u0 = 0 for simplic-
ity.) Derive the standard continuous finite element method for (9) based on piecewise linear
elements on the same uniform grid introduced above. Show that a specific implementation
of the method yields, at least at the internal nodes, the same equations obtained with the
finite difference method. Discuss the functional setting and range of applicability of both
methods in terms of the regularity of the forcing function f .

(d) Assuming, moreover, that b = 0, show that a specific implementation of the finite volume
method applied to (9) yields once more the finite difference method above.

15. Consider a linear neural network fθ : Rn → Rm defined as the parametrized function
fθ(x) = Aθx + bθ , where θ = {A, b} are the weights and biases parameters, respectively given
by Aθ ∈ Rm×n, bθ ∈ Rm , where m ≥ n .

(a) By choosing the parameter as θ = θ̄ we assume we can define the network as fθ̄(x) = Jx ,
i.e. J = Aθ̄ with full column rank, and bθ̄ = 0. Given y ∈ Rm , we want to solve the least
square problem with objective function l defined as

min
x∈Rn

l(x) where l(x) =
1

2
∥fθ̄(x)− y∥2.

(i) Derive the normal equations of the problem.

(ii) Exploit the Singular Value Decomposition (SVD) of J, namely J = USV T , to show
that the optimum is given by x∗ = V S−1UT y .

(b) Assume now we have the training data pairs {(xk, yk)}Kk=1 . We define the loss function as

l(θ) =
1

2K

K∑
k=1

∥fθ(xk)− yk∥2.

(iii) Compute the expression for the gradient of the loss function lθ w.r.t. the weights and
biases of the network, i.e. ∇Al(θ) and ∇bl(θ).

(iv) Write a pseudo-code algorithm for a gradient descent update of the parameter θ =
{A, b} .
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Continuum Mechanics

16. Consider the plane and homogeneous deformation y : [0, 1] × [0, 1] → E such that, in
Cartesian components, y(0, 0) = (0, 0), y(1, 0) = (1,−3α), and y(0, 1) = (3, α), with α a
scalar parameter. Determine the admissible values of the parameter α . For the case of α = 1,
determine the stretch and the rotation tensor in the right polar decomposition of the gradient
of the deformation. Assuming linear elastic and isotropic material response, determine the state
of stress for the admissible values of α and discuss the case of α = 1.

17. Determine the buckling loads of the discrete elastic system shown in the figure below.
Assume that the two torsional springs are linear elastic with stiffness k1 and k2 . Note that the
internal constraint allows only for the relative transverse motion between the connected bars.
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18. An infinite, hyperelastic and incompressible strip of thickness h is adhered on a rigid flat
substrate and subject under plane strain conditions to a reference shearing force of magnitude
τ applied on its top surface. Take as reference strain energy density ψ(F) = µ(F · F − 3)/2,
where F is the deformation gradient and µ the shear modulus. Determine the deformation of
the strip, the first Piola-Kirchhoff stress tensor, and the Cauchy stress tensor.

19. Two spheres of density ρs and radii r1 and r2 are connected at their center by a linear
elastic spring of stiffness k and rest length ℓ , much greater than the spheres’ radii. Assume
that the two spheres are vertically aligned and steadily falling under the influence of gravity in
a Newtonian fluid of viscosity µ and density ρ . Determine the velocity of the system and the
elongation of the elastic spring. For the computation, assume Stokes flow in the surrounding
fluid and neglect hydrodynamic interactions between the spheres. Comment about the cases of
r1 = r2 and of ρs = ρ .

20. A straight elastic rod of length ℓ and circular cross section of radius r is in a state of pure
bending through the application of moments at its ends. Let E denote the Young’s modulus
of the material of the rod and assume that this brakes as the relative rotation between its ends
is of αf . Determine the state of stress in the rod, its configuration at failure, and estimate the
strength of the material, σf .
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