
SISSA – Mathematics Area

Entrance examination for the course in Mathematical Analysis, Modelling, and Applications

September 10, 2020

Solve THREE of the following problems. In the first page of your examination paper please
write neatly the list of the exercises you have chosen. These exercises only (in any case not more
than three) will be considered for the selection.

Mathematical Analysis

Ex. 1. Let f, g : R→ R be 2π periodic functions.

(a) If f ∈ C∞ , prove that for any n ∈ N , there exists a constant Cn > 0 such that∣∣∣f̂k∣∣∣ ≤ Cn
|k|n

, ∀k ∈ Z \ {0},

where f̂k := (2π)−1
∫ 2π
0 f(t) e−iktdt is the k -th Fourier coefficient of f .

(b) For f ∈ C∞ and g ∈ L∞ , prove that

lim
n→∞

∫ 2π

0
f(t) g(nt) dt = 2πf̂0 ĝ0.

(c) Prove that the same result holds true when f ∈ L1 .

Ex. 2. On the two-dimensional periodic domain T2 := (R/2πZ)2 consider a C∞ divergence-free
velocity field u : T2 → R2 , namely u : R2 → R2 , u(x) = (u1(x1, x2), u2(x1, x2)), is 2π -
periodic in each variable x1, x2 and div(u) = ∂x1u1 + ∂x2u2 = 0. Let f(t, x) and fν(t, x)
be real valued C∞ solutions, defined for any time t ≥ 0, x ∈ T2 , of the partial differential
equations {

∂tf + u(x) · ∇f = 0 ,

f(0, x) = f in(x) ,
(1)

and {
∂tf

ν + u(x) · ∇fν = ν∆fν ,

fν(0, x) = f in(x) ,
(2)

where ν > 0 and the function f in(x) ∈ C∞(T2,R) has zero mean, i.e.∫
T2

f in(x)dx = 0 .

Prove the following:
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(a) for any t ≥ 0, one has ∫
T2

f(t, x) dx =

∫
T2

fν(t, x) dx = 0 ;

(b) for any t ≥ 0, one has

‖f(t)‖L2 =
(∫

T2

|f(t, x)|2dx
) 1

2
=
∥∥f in∥∥

L2 ;

(c) there exists a constant c > 0 such that, for any t ≥ 0,

‖fν(t)‖L2 ≤ e−cνt
∥∥f in∥∥

L2 .

Ex. 3. Prove that, for any c ∈ [0, 1), the solution t 7→ xc(t) of the problem
ẍ+ (1 + c2)x− 2c2x3 = 0

x(0) = 0

ẋ(0) = 1 ,

is periodic. What about c = 1?

Ex. 4. Let (fn)n be a sequence of functions in L1[0, 1] with fn → f a.e. and

lim
n→∞

‖fn‖L1 = ‖f‖L1 . (3)

(a) Prove that limn→∞ ‖fn − f‖L1 = 0.

(b) Prove with an example that, if the condition (3) is changed in

‖fn‖L1 converges

the thesis is not true.

Ex. 5. Let `2 and `∞ denote the sequence spaces `2 :=
{
x = (xi)i∈N , xi ∈ R : ‖x‖2 :=

(
∑∞

i=1 |xi|2)1/2 <∞
}

and `∞ :=
{
x = (xi)i∈N , xi ∈ R : ‖x‖∞ := supi=1,...,∞ |xi| <∞

}
.

(a) Given any w = (wi)i∈N ∈ `∞ , determine the spectrum σ(Tw) of the multiplicative
operator Tw : `2 → `2 associating to any sequence x = (xi)i∈N ∈ `2 the element Tx with
components (Tx)i = xiwi , ∀i ∈ N ;

(b) Let A ⊂ C be an arbitrary non-empty compact set. Construct a linear and bounded
operator T : `2 → `2 such that its spectrum σ(T ) coincides with A , i.e. σ(T ) = A .
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Ex. 6. Consider a differential equation

ẋ = f(t, x) , x ∈ Rn , (4)

where the vector field f : R × Rn → Rn is locally Lipschitz continuous and there exist
constants C > 0 and M > 1 such that

|f(t, x)| ≤ C|x|M , ∀x ∈ Rn , t ∈ R .

Consider the solution xε(t) of (4) with initial datum x(0) = ε and let (−Tmax(ε), Tmax(ε))
be its maximal interval of definition.

Prove that there exists ε0 > 0 and a constant c > 0 such that, for any ε ∈ (0, ε0), it
results

Tmax(ε) ≥ cε−(M−1) .

Numerical Analysis

Ex. 7.

(a) Consider the linear system Ax = b with

A =

[
1 2
2 3

]
, b =

[
3
5

]
.

Consider then the iterative method x(k+1) = B(θ)x(k) + g(θ), in which

B(θ) =
1

4

[
2θ2 + 2θ + 1 −2θ2 + 2θ + 1
−2θ2 + 2θ + 1 2θ2 + 2θ + 1

]
, g(θ) =

[
1
2 − θ
1
2 − θ

]
.

Prove that the iterative method is consistent ∀θ ∈ R , and discuss its convergence for a
fixed value of θ .

(b) Suppose instead that the system matrix A ∈ Rn×n is a large real sparse matrix, n � 1.
Describe an iterative method to numerically solve the linear system Ax = b for some
b ∈ Rn . You may add further condition on A if required by the numerical method.

(c) Illustrate a few available stopping criteria for the numerical method described in (b), and
highlight the main properties of each criterion.

Ex. 8.

(a) Let I ⊂ R be a closed interval. Let f : I → R be a continuous function. Assume that
there exists at least a value α ∈ I such that f(α) = 0. Discuss a numerical method to
approximate α . You may add further regularity assumptions, if required by the numerical
method.
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(b) Let Γ ⊂ Rn be a compact set. Let g : Γ → Rn be a continuous function. Assume that
there exists at least a value v ∈ Γ such that g(v) = 0 . Discuss a numerical method to
approximate v , and highlight similarities and/or differences with the answer provided in
(a). You may add further regularity assumptions, if required by the numerical method.

(c) Let Ω ⊂ R2 be an open and bounded domain. Let u : Ω→ R be the solution to n(u) = 0,
where n(u) = −∆u+u3−1, and u is such that u = 0 on ∂Ω. Discuss a numerical method
to approximate u , and highlight how you make use of the answer at (b).

Ex. 9. Let Ω ⊂ R2 be an open and bounded domain. Define the following problem{
−div (µ∇u) + b · ∇u = f, in Ω

u = 0, on ∂Ω,

where µ ∈ R , b ∈ R2 and f : Ω→ R .

(a) Discuss under which assumptions on the data µ,b and f the problem is well posed, and
derive the weak formulation.

(b) Let |b| � µ : introduce a finite element approximation uh to u , and discuss convergence
properties of uh to u as the finite element mesh size h→ 0.

(c) Let |b| � µ : introduce a finite element approximation uh to u . Describe which (if any)
numerical difficulties arise in this case, especially if h� 0. Do you expect the convergence
properties that you mentioned in (b) to hold in this case as well?

Continuum Mechanics

Ex. 10. Compute the critical load, Pc , of the elastic system shown in the figure. In particular,
this comprises a rigid bar of length ` that is constrained on its left extremity by a smooth
circular profile of radius r . In the figure, k denotes the stiffness of the torsional spring.

`

k
P

r
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Ex. 11. Let {e1, e2, e3} be an orthonormal basis. Consider a cylindrical solid, of axis e3 ,
at equilibrium in a state of uniaxial tension under prescribed normal tractions of magnitude
σ acting on its bases. Assume that the components Eαα = eα · Eeα and Eββ = eβ · Eeβ of
the (infinitesimal) strain are given, where eα = cosα e2 + sinα e3 and eβ = cosβ e2 + sinβ e3 ,
with α 6= β . Determine the Young’s modulus and the Poisson’s ratio using linear elasticity and
assuming isotropic material response.

Ex. 12. A cylindrical chalk stick with circular cross section of radius r is subject at its extrem-
ities to applied bending moments of magnitude M . Let σf be the strength of chalk (the force
per unit area defining the strength of the material). Estimate the magnitude Mf of the bending
moments at which the chalk stick breaks. Recall that the moment of inertia of a circular cross
section is πr4/4.

5


