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Exercises are numbered as in the lecture notes of the course.

1 Exercises from Chapter 2

Exercise 2.8.3. Find the general solution to the following equations:

2% Upy — Y* Uy — 2y 1y =0, (1a)

2% Uy — 22Y Uy + Y Uy + T Uy + Yy, = 0. (1b)

Solution. To find the general solution to the two equations, it is convenient to put them
in canonical form first. Let’s consider equation (la), and determine its characteristics.

We have

2 2

a(z,y) =2, b(z,y) =0, c(z,y)=—y
from which we obtain
b — ac = 2*y* > 0,

hence the equation is of hyperbolic type. For simplicity, we assume to solve the equation

in the domain
Q:{(x,y)€R2:x>0,y>O},

so that v/b? — ac = xy in €.

The characteristics are obtained by solving

dy Ty Yy
L AT A

dx 22 x
namely

u=¢(x,y) = % v=1(x,y) = zy.



Inverting this relations we obtain

, Y =uv.

v
T =4/—
u

Using the chain rule for differentiation yields to
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Notice that from this it follows that
0 0 0

Using now Leibnitz rule and paying attention to the derivatives of the coefficients, we
can compute the second derivative operators. We obtain
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In conclusion, the canonical form of equation (1a) can be obtained by summing term
by term (3) and (2), hence resulting (upon division by a common factor —2v) in

2U Yoy + @ = 0. (4)
To obtain the general solution to (1a), set

D (u,v) := @, (u,v).



Equation (4), written in terms of ®, becomes
2P, +P =0

and hence can be easily solved, for example with the method of separation of variables.
We obtain

and hence
p(u,v) = f(u) + ==

where ¢ is a primitive of k. The general solution to (1la), written in terms of the initial

variables (z,y), is then
_r(¥ z
p(z,y) = f (x) + \/;g(fcy)

where f, g are two sufficiently regular (of class C?) arbitrary functions.
We now come to equation (1b). We have now

2

a(z,y) =2, blz,y)=—zy, c(z,y)=y

from which we obtain
b —ac =0,

hence the equation is of parabolic type. For simplicity, we assume to solve the equation
in the half-plane
Q={(z,y) eR*: 2 >0}.

The only characteristic can be obtained by solving

dy — wxy oy

de 22z
namely

u=¢(z,y) = y.
For the second characteristic, we choose

v = ¢($,y) = .

Inverting these relations yields to



Using the chain rule, we obtain
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Using now Leibnitz rule and paying attention to the derivatives of the coefficients, we
can compute the second derivative operators. We obtain
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In conclusion, the canonical form of equation (1b) can be obtained by summing term
by term (6) and (5), hence resulting (upon division by a common factor v) in

V Py + ©p = 0. (7)



To obtain the general solution to (1b), set
O (u,v) = @y(u,v).
Equation (7), written in terms of ®, becomes
v®,+P=0

and hence can be easily solved, for example with the method of separation of variables.
We obtain
g(u)

v

O (u,v) =

and hence
p(u,v) = f(u) + g(u) In(v).

The general solution to (1b), written in terms of the initial variables (x,y), is then

o(r,y) = f(zy) + g(ry) In(z)

where f, g are two sufficiently regular (of class C?) arbitrary functions. &

2 Exercises from Chapter 3

Exercise 3.8.9 (The Gibbs phenomenon). Denote

4 - sin((2k — Dz

the n-th partial sum of the Fourier series (3.5.35). Prove that
1. for any x € (—m, )
lim S, (z) = signz.
n—oo
Hint: derive the following expression for the derivative:

S (z) = 2 siI?(an)‘
7 sin(z)
2. Verify that the n-th partial sum has a mazximum at

™

Ty = —.
2n

3. Prove that

. (2k—1)7
2 n Sln( n > 2 T 2
Sulta) =S T L 2 SIN(@) 1~ 117808
T 1 n 0

(2k—1)7 T T

for n — oo.



Thus for the trigonometric series (3.5.35)

limsup S,(z) >1 for x>0.

n—o0

In a similar way one can prove that

liminf S, (z) < =1 for x <0.
n—oo

Solution. 1. Let’s prove the hinted form for the derivative S),(x). One has

= %Zcos((Zk —1)x)

hence we need to prove that
2sin(x) (cos(z) 4 cos(3x) + - - - + cos((2n — 1)x)) = sin(2nz) for all n € N.

The statement is true for n = 1, as 2sin(z)cos(x) = sin(2x). We then proceed by
induction, computing

2sin(z) (co ( )+ cos(3x) + - - - + cos((2n — 1)x) + cos((2n + 1)x)) =
sin(2nx) + 2sin(x) cos((2n + 1)z) =
51n(2m:) + 2sin(x) (cos(2nz) cos(z) — sin(2nx) sin(x)) =
= sin(2nz) (1 — 2sin*(z)) + cos(2nz) sin(2z) =
(2n) (

= sin(2nx) cos(2x) + cos(2nx) sin(2x) = sin(2(n + 1)z).

We now have that
sin(2nx) _ sin(2(n — 1)z) cos(2z) + cos(2(n — 1)z) sin(2z)
sin(z) sin(z)
sin(2(n — 1)x)
sin(z)

+ 2cos(2(n — 1)x) cos(x),

= cos(27)
and consequently

S; (x) = cos(2x)S,

n—1

(x) + %005(2(71 — 1)x) cos(z).

Fix > 0. Since S,,(0) = 0 for all n € N, integrating the above relation on [0, z] yields



to

Sn(x) = /Ow cos(2t)S) () dt + 4 /Ox cos(2(n — 1)t) cos(t) dt =

™

= [COS<2t)Sn—1(t)]§zg + 2 /Ox sin(2t)5’n_1(t) dt+

4 1 CEQ(n—l) y
+ = —2(n =) /0 cos(y) cos <—2(n — 1)) dy =

= cos(2x)S,_1(x) + 2 /0z sin(2t)S,_1(t) dt+

4 1 x2(n—1) y
+ = m/o cos(y) cos <m) dy.

Letting n — oo, we obtain that

S(x):= lim S,(z) = cos(2z)S(x) + 2/02 sin(2¢)S(t) dt.

n—0o0

Upon differentiation of the above equality with respect to =, we get
S'(x)(1 — cos(2x)) + S(x)2sin(2x) = 2sin(2x)S(z) <= S'(x)(1 — cos(2zx)) = 0.

Since the above equation should be satisfied for all x > 0, we obtain that S’'(z) = 0, or
equivalently S(z) is constant. By evaluating

4 > (_1>k—1
9) = —

S(m/2) h 1

k=1

=1

)

we obtain S(z) =1 for all > 0. Since S, is an odd function of S, also S is odd, so we
conclude that S(z) = signx.

2. To verify that x,, = 7/2n is a maximum for S,,, it suffices to show that

S (x,) =0, S!(x,) <0.

We have _
S = 2 S0
7 sin(m/2n)
while
() = 2 2n cos(2nx) sin(.xl — sin(2nx) cos(x) _2 ' —2n <o
T sin®(x) T sin(7/2n)

3. Now notice that

5 o gin ((2]471)71')
m 2n
k=1 2n



sin(x)

2
is a Riemann sum for the continuous function — on the interval (0,7), with

x
3 2n — 1
partition < 0, 1, —W, cee u, 7w ». By definition of Riemann integral, this sum
2n 2n 2n

converges to

2 [T si

2 / sin(z) s

T Jo x
as wanted. &

Exercise 3.8.3 bis (A variation on Exercise 3.8.3). For few instants of time t > 0
make a graph of the solution u(x,t) to the wave equation on the half line x > 0 with
Dirichlet boundary condition
u(0,t) =0
and with the initial data
u(z,0) = ¢(x), u(z,0) =0, x>0

where the graph of the function ¢(x) is an isosceles triangle of height 1 and base |l, 3l].

Solution. The analytic form of the solution can be computed from D’Alembert formula,
extending the initial data on the half line {z < 0} as an odd function. We plot here the
graph of the solution with a continuous blue line. The yellow and purple dotted lines
represent respectively the retarded and advanced wave, with halved height. &
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