Ist. di Fisica Matematica mod. A Second exercise session

Nicolò Piazzalunga (npiazza@sissa.it)

October 21st, 2015

Exercises are numbered as in the lecture notes of the course.

1 Exercises from Chapter 2

Exercise 2.8.3. Find the general solution to the following equations:

$$
\begin{gather*}
x^{2} u_{x x}-y^{2} u_{y y}-2 y u_{y}=0, \tag{1a}\\
x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0 . \tag{1b}
\end{gather*}
$$

Solution. To find the general solution to the two equations, it is convenient to put them in canonical form first. Let's consider equation (1a), and determine its characteristics. We have

$$
a(x, y)=x^{2}, \quad b(x, y)=0, \quad c(x, y)=-y^{2}
$$

from which we obtain

$$
b^{2}-a c=x^{2} y^{2}>0,
$$

hence the equation is of hyperbolic type. For simplicity, we assume to solve the equation in the domain

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\},
$$

so that $\sqrt{b^{2}-a c}=x y$ in Ω.
The characteristics are obtained by solving

$$
\frac{d y}{d x}= \pm \frac{x y}{x^{2}}= \pm \frac{y}{x}
$$

namely

$$
u=\phi(x, y)=\frac{y}{x}, \quad v=\psi(x, y)=x y .
$$

Inverting this relations we obtain

$$
x=\sqrt{\frac{v}{u}}, \quad y=\sqrt{u v} .
$$

Using the chain rule for differentiation yields to

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial u}{\partial x} \frac{\partial}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial}{\partial v}=-\frac{y}{x^{2}} \frac{\partial}{\partial u}+y \frac{\partial}{\partial v}= \\
& =-\sqrt{\frac{u^{3}}{v}} \frac{\partial}{\partial u}+\sqrt{u v} \frac{\partial}{\partial v} \\
\frac{\partial}{\partial y} & =\frac{\partial u}{\partial y} \frac{\partial}{\partial u}+\frac{\partial v}{\partial y} \frac{\partial}{\partial v}=\frac{1}{x} \frac{\partial}{\partial u}+x \frac{\partial}{\partial v}= \\
& =\sqrt{\frac{u}{v}} \frac{\partial}{\partial u}+\sqrt{\frac{v}{u}} \frac{\partial}{\partial v} .
\end{aligned}
$$

Notice that from this it follows that

$$
\begin{equation*}
-2 y \frac{\partial}{\partial y}=-2 u \frac{\partial}{\partial u}-2 v \frac{\partial}{\partial v} . \tag{2}
\end{equation*}
$$

Using now Leibnitz rule and paying attention to the derivatives of the coefficients, we can compute the second derivative operators. We obtain

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} & =\left(-\sqrt{\frac{u^{3}}{v}} \frac{\partial}{\partial u}+\sqrt{u v} \frac{\partial}{\partial v}\right)\left(-\sqrt{\frac{u^{3}}{v}} \frac{\partial}{\partial u}+\sqrt{u v} \frac{\partial}{\partial v}\right)= \\
& =\frac{u^{3}}{v} \frac{\partial^{2}}{\partial u^{2}}-2 u^{2} \frac{\partial^{2}}{\partial u \partial v}+u v \frac{\partial^{2}}{\partial v^{2}}+2 \frac{u^{2}}{v} \frac{\partial}{\partial u}, \\
\frac{\partial^{2}}{\partial y^{2}} & =\left(\sqrt{\frac{u}{v}} \frac{\partial}{\partial u}+\sqrt{\frac{v}{u}} \frac{\partial}{\partial v}\right)\left(\sqrt{\frac{u}{v}} \frac{\partial}{\partial u}+\sqrt{\frac{v}{u}} \frac{\partial}{\partial v}\right)= \\
& =\frac{u}{v} \frac{\partial^{2}}{\partial u^{2}}+2 \frac{\partial^{2}}{\partial u \partial v}+\frac{v}{u} \frac{\partial^{2}}{\partial v^{2}},
\end{aligned}
$$

and consequently

$$
\begin{align*}
x^{2} \frac{\partial^{2}}{\partial x^{2}} & =u^{2} \frac{\partial^{2}}{\partial u^{2}}-2 u v \frac{\partial^{2}}{\partial u \partial v}+v^{2} \frac{\partial^{2}}{\partial v^{2}}+2 u \frac{\partial}{\partial u}, \\
-y^{2} \frac{\partial^{2}}{\partial y^{2}} & =-u^{2} \frac{\partial^{2}}{\partial u^{2}}-2 u v \frac{\partial^{2}}{\partial u \partial v}-v^{2} \frac{\partial^{2}}{\partial v^{2}} . \tag{3}
\end{align*}
$$

In conclusion, the canonical form of equation (1a) can be obtained by summing term by term (3) and (2), hence resulting (upon division by a common factor $-2 v$) in

$$
\begin{equation*}
2 u \varphi_{u v}+\varphi_{v}=0 \tag{4}
\end{equation*}
$$

To obtain the general solution to (1a), set

$$
\Phi(u, v):=\varphi_{v}(u, v) .
$$

Equation (4), written in terms of Φ, becomes

$$
2 u \Phi_{u}+\Phi=0
$$

and hence can be easily solved, for example with the method of separation of variables. We obtain

$$
\Phi(u, v)=\frac{k(v)}{\sqrt{u}}
$$

and hence

$$
\varphi(u, v)=f(u)+\frac{g(v)}{\sqrt{u}}
$$

where g is a primitive of k. The general solution to (1a), written in terms of the initial variables (x, y), is then

$$
\varphi(x, y)=f\left(\frac{y}{x}\right)+\sqrt{\frac{x}{y}} g(x y)
$$

where f, g are two sufficiently regular (of class \mathcal{C}^{2}) arbitrary functions.
We now come to equation (1b). We have now

$$
a(x, y)=x^{2}, \quad b(x, y)=-x y, \quad c(x, y)=y^{2}
$$

from which we obtain

$$
b^{2}-a c=0,
$$

hence the equation is of parabolic type. For simplicity, we assume to solve the equation in the half-plane

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\} .
$$

The only characteristic can be obtained by solving

$$
\frac{d y}{d x}=-\frac{x y}{x^{2}}=-\frac{y}{x}
$$

namely

$$
u=\phi(x, y)=x y
$$

For the second characteristic, we choose

$$
v=\psi(x, y)=x .
$$

Inverting these relations yields to

$$
x=v, \quad y=\frac{u}{v} .
$$

Using the chain rule, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial u}{\partial x} \frac{\partial}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial}{\partial v}=y \frac{\partial}{\partial u}+\frac{\partial}{\partial v}= \\
& =\frac{u}{v} \frac{\partial}{\partial u}+\frac{\partial}{\partial v}, \\
\frac{\partial}{\partial y} & =\frac{\partial u}{\partial y} \frac{\partial}{\partial u}+\frac{\partial v}{\partial y} \frac{\partial}{\partial v}=x \frac{\partial}{\partial u}= \\
& =v \frac{\partial}{\partial u}
\end{aligned}
$$

Notice that from this it follows that

$$
\begin{align*}
& x \frac{\partial}{\partial x}=u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v} \\
& y \frac{\partial}{\partial y}=u \frac{\partial}{\partial u} \tag{5}
\end{align*}
$$

Using now Leibnitz rule and paying attention to the derivatives of the coefficients, we can compute the second derivative operators. We obtain

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} & =\left(\frac{u}{v} \frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right)\left(\frac{u}{v} \frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right)= \\
& =\frac{u^{2}}{v^{2}} \frac{\partial^{2}}{\partial u^{2}}+2 \frac{u}{v} \frac{\partial^{2}}{\partial u \partial v}+\frac{\partial^{2}}{\partial v^{2}} \\
\frac{\partial^{2}}{\partial x \partial y} & =\left(v \frac{\partial}{\partial u}\right)\left(\frac{u}{v} \frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right)= \\
& =u \frac{\partial^{2}}{\partial u^{2}}+v \frac{\partial^{2}}{\partial u \partial v}+\frac{\partial}{\partial u} \\
\frac{\partial^{2}}{\partial y^{2}} & =\left(v \frac{\partial}{\partial u}\right)\left(v \frac{\partial}{\partial u}\right)= \\
& =v^{2} \frac{\partial^{2}}{\partial u^{2}}
\end{aligned}
$$

and consequently

$$
\begin{align*}
x^{2} \frac{\partial^{2}}{\partial x^{2}} & =u^{2} \frac{\partial^{2}}{\partial u^{2}}+2 u v \frac{\partial^{2}}{\partial u \partial v}+v^{2} \frac{\partial^{2}}{\partial v^{2}}, \\
-2 x y \frac{\partial^{2}}{\partial x \partial y} & =-2 u^{2} \frac{\partial^{2}}{\partial u^{2}}-2 u v \frac{\partial^{2}}{\partial u \partial v}-2 u \frac{\partial}{\partial u}, \tag{6}\\
y^{2} \frac{\partial^{2}}{\partial y^{2}} & =u^{2} \frac{\partial^{2}}{\partial u^{2}}
\end{align*}
$$

In conclusion, the canonical form of equation (1b) can be obtained by summing term by term (6) and (5), hence resulting (upon division by a common factor v) in

$$
\begin{equation*}
v \varphi_{v v}+\varphi_{v}=0 \tag{7}
\end{equation*}
$$

To obtain the general solution to (1b), set

$$
\Phi(u, v):=\varphi_{v}(u, v) .
$$

Equation (7), written in terms of Φ, becomes

$$
v \Phi_{v}+\Phi=0
$$

and hence can be easily solved, for example with the method of separation of variables. We obtain

$$
\Phi(u, v)=\frac{g(u)}{v}
$$

and hence

$$
\varphi(u, v)=f(u)+g(u) \ln (v) .
$$

The general solution to (1b), written in terms of the initial variables (x, y), is then

$$
\varphi(x, y)=f(x y)+g(x y) \ln (x)
$$

where f, g are two sufficiently regular (of class \mathcal{C}^{2}) arbitrary functions.

2 Exercises from Chapter 3

Exercise 3.8.9 (The Gibbs phenomenon). Denote

$$
S_{n}(x)=\frac{4}{\pi} \sum_{k=1}^{n} \frac{\sin ((2 k-1) x)}{2 k-1}
$$

the n-th partial sum of the Fourier series (3.5.35). Prove that

1. for any $x \in(-\pi, \pi)$

$$
\lim _{n \rightarrow \infty} S_{n}(x)=\operatorname{sign} x .
$$

Hint: derive the following expression for the derivative:

$$
S_{n}^{\prime}(x)=\frac{2}{\pi} \frac{\sin (2 n x)}{\sin (x)}
$$

2. Verify that the n-th partial sum has a maximum at

$$
x_{n}=\frac{\pi}{2 n} .
$$

3. Prove that

$$
S_{n}\left(x_{n}\right)=\frac{2}{\pi} \sum_{k=1}^{n} \frac{\pi}{n} \cdot \frac{\sin \left(\frac{(2 k-1) \pi}{2 n}\right)}{\frac{(2 k-1) \pi}{2 n}} \longrightarrow \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin (x)}{x} d x \approx 1.17898
$$

for $n \rightarrow \infty$.

Thus for the trigonometric series (3.5.35)

$$
\limsup _{n \rightarrow \infty} S_{n}(x)>1 \quad \text { for } \quad x>0
$$

In a similar way one can prove that

$$
\liminf _{n \rightarrow \infty} S_{n}(x)<-1 \quad \text { for } \quad x<0
$$

Solution. 1. Let's prove the hinted form for the derivative $S_{n}^{\prime}(x)$. One has

$$
S_{n}^{\prime}(x)=\frac{4}{\pi} \sum_{k=1}^{n} \cos ((2 k-1) x)
$$

hence we need to prove that

$$
2 \sin (x)(\cos (x)+\cos (3 x)+\cdots+\cos ((2 n-1) x))=\sin (2 n x) \quad \text { for all } n \in \mathbb{N} .
$$

The statement is true for $n=1$, as $2 \sin (x) \cos (x)=\sin (2 x)$. We then proceed by induction, computing

$$
\begin{aligned}
2 \sin (x) & (\cos (x)+\cos (3 x)+\cdots+\cos ((2 n-1) x)+\cos ((2 n+1) x))= \\
& =\sin (2 n x)+2 \sin (x) \cos ((2 n+1) x)= \\
& =\sin (2 n x)+2 \sin (x)(\cos (2 n x) \cos (x)-\sin (2 n x) \sin (x))= \\
& =\sin (2 n x)\left(1-2 \sin ^{2}(x)\right)+\cos (2 n x) \sin (2 x)= \\
& =\sin (2 n x) \cos (2 x)+\cos (2 n x) \sin (2 x)=\sin (2(n+1) x) .
\end{aligned}
$$

We now have that

$$
\begin{aligned}
\frac{\sin (2 n x)}{\sin (x)} & =\frac{\sin (2(n-1) x) \cos (2 x)+\cos (2(n-1) x) \sin (2 x)}{\sin (x)}= \\
& =\cos (2 x) \frac{\sin (2(n-1) x)}{\sin (x)}+2 \cos (2(n-1) x) \cos (x)
\end{aligned}
$$

and consequently

$$
S_{n}^{\prime}(x)=\cos (2 x) S_{n-1}^{\prime}(x)+\frac{4}{\pi} \cos (2(n-1) x) \cos (x)
$$

Fix $x>0$. Since $S_{n}(0)=0$ for all $n \in \mathbb{N}$, integrating the above relation on $[0, x]$ yields
to

$$
\begin{aligned}
S_{n}(x)= & \int_{0}^{x} \cos (2 t) S_{n-1}^{\prime}(t) d t+\frac{4}{\pi} \int_{0}^{x} \cos (2(n-1) t) \cos (t) d t= \\
= & {\left[\cos (2 t) S_{n-1}(t)\right]_{t=0}^{t=x}+2 \int_{0}^{x} \sin (2 t) S_{n-1}(t) d t+} \\
& +\frac{4}{\pi} \frac{1}{2(n-1)} \int_{0}^{x 2(n-1)} \cos (y) \cos \left(\frac{y}{2(n-1)}\right) d y= \\
= & \cos (2 x) S_{n-1}(x)+2 \int_{0}^{x} \sin (2 t) S_{n-1}(t) d t+ \\
& +\frac{4}{\pi} \frac{1}{2(n-1)} \int_{0}^{x 2(n-1)} \cos (y) \cos \left(\frac{y}{2(n-1)}\right) d y .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain that

$$
S(x):=\lim _{n \rightarrow \infty} S_{n}(x)=\cos (2 x) S(x)+2 \int_{0}^{x} \sin (2 t) S(t) d t .
$$

Upon differentiation of the above equality with respect to x, we get

$$
S^{\prime}(x)(1-\cos (2 x))+S(x) 2 \sin (2 x)=2 \sin (2 x) S(x) \quad \Longleftrightarrow \quad S^{\prime}(x)(1-\cos (2 x))=0
$$

Since the above equation should be satisfied for all $x>0$, we obtain that $S^{\prime}(x) \equiv 0$, or equivalently $S(x)$ is constant. By evaluating

$$
S(\pi / 2)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k-1}=1
$$

we obtain $S(x)=1$ for all $x>0$. Since S_{n} is an odd function of S, also S is odd, so we conclude that $S(x)=\operatorname{sign} x$.
2. To verify that $x_{n}=\pi / 2 n$ is a maximum for S_{n}, it suffices to show that

$$
S_{n}^{\prime}\left(x_{n}\right)=0, \quad S_{n}^{\prime \prime}\left(x_{n}\right)<0 .
$$

We have

$$
S_{n}^{\prime}\left(x_{n}\right)=\frac{2}{\pi} \frac{\sin (\pi)}{\sin (\pi / 2 n)}=0
$$

while

$$
S_{n}^{\prime \prime}\left(x_{n}\right)=\left.\frac{2}{\pi} \frac{2 n \cos (2 n x) \sin (x)-\sin (2 n x) \cos (x)}{\sin ^{2}(x)}\right|_{x=\pi / 2 n}=\frac{2}{\pi} \frac{-2 n}{\sin (\pi / 2 n)}<0
$$

3. Now notice that

$$
S_{n}\left(x_{n}\right)=\frac{2}{\pi} \sum_{k=1}^{n} \frac{\pi}{n} \cdot \frac{\sin \left(\frac{(2 k-1) \pi}{2 n}\right)}{\frac{(2 k-1) \pi}{2 n}}
$$

is a Riemann sum for the continuous function $\frac{2}{\pi} \frac{\sin (x)}{x}$ on the interval $(0, \pi)$, with partition $\left\{0, \frac{\pi}{2 n}, \frac{3 \pi}{2 n}, \ldots, \frac{(2 n-1) \pi}{2 n}, \pi\right\}$. By definition of Riemann integral, this sum converges to

$$
\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin (x)}{x} d x
$$

as wanted.
Exercise 3.8.3 bis (A variation on Exercise 3.8.3). For few instants of time $t \geq 0$ make a graph of the solution $u(x, t)$ to the wave equation on the half line $x \geq 0$ with Dirichlet boundary condition

$$
u(0, t)=0
$$

and with the initial data

$$
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=0, \quad x>0
$$

where the graph of the function $\phi(x)$ is an isosceles triangle of height 1 and base $[l, 3 l]$.

Solution. The analytic form of the solution can be computed from D'Alembert formula, extending the initial data on the half line $\{x<0\}$ as an odd function. We plot here the graph of the solution with a continuous blue line. The yellow and purple dotted lines represent respectively the retarded and advanced wave, with halved height.

$$
\mathrm{t}=\frac{l}{2 a}
$$

$$
\mathrm{t}=\frac{l}{2 a}+\epsilon
$$

$\mathrm{t}=\frac{l}{a}$

$\mathrm{t}=\frac{3 l}{2 a}$

$\mathrm{t}=\frac{2 l}{a}$

$\mathrm{t}=\frac{3 l}{a}$

$\mathrm{t}=\frac{l}{a}+\epsilon$
$\mathrm{t}=\frac{3 l}{2 a}+\epsilon$

$\mathrm{t}=\frac{3 l}{a}+\epsilon$

