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Exercises are numbered as in the lecture notes of the course.

1 Exercises from Chapter 2

Exercise 2.8.3. Find the general solution to the following equations:

x2 uxx − y2 uyy − 2y uy = 0, (1a)

x2 uxx − 2xy uxy + y2 uyy + xux + y uy = 0. (1b)

Solution. To find the general solution to the two equations, it is convenient to put them
in canonical form first. Let’s consider equation (1a), and determine its characteristics.
We have

a(x, y) = x2, b(x, y) = 0, c(x, y) = −y2

from which we obtain
b2 − ac = x2y2 > 0,

hence the equation is of hyperbolic type. For simplicity, we assume to solve the equation
in the domain

Ω =
{

(x, y) ∈ R2 : x > 0, y > 0
}
,

so that
√
b2 − ac = xy in Ω.

The characteristics are obtained by solving

dy

dx
= ±xy

x2
= ±y

x

namely

u = φ(x, y) =
y

x
, v = ψ(x, y) = xy.
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Inverting this relations we obtain

x =

√
v

u
, y =

√
uv.

Using the chain rule for differentiation yields to

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
= − y

x2
∂

∂u
+ y

∂

∂v
=

= −
√
u3

v

∂

∂u
+
√
uv

∂

∂v
,

∂

∂y
=
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
=

1

x

∂

∂u
+ x

∂

∂v
=

=

√
u

v

∂

∂u
+

√
v

u

∂

∂v
.

Notice that from this it follows that

−2y
∂

∂y
= −2u

∂

∂u
− 2v

∂

∂v
. (2)

Using now Leibnitz rule and paying attention to the derivatives of the coefficients, we
can compute the second derivative operators. We obtain

∂2

∂x2
=

(
−
√
u3

v

∂

∂u
+
√
uv

∂

∂v

)(
−
√
u3

v

∂

∂u
+
√
uv

∂

∂v

)
=

=
u3

v

∂2

∂u2
− 2u2

∂2

∂u∂v
+ uv

∂2

∂v2
+ 2

u2

v

∂

∂u
,

∂2

∂y2
=

(√
u

v

∂

∂u
+

√
v

u

∂

∂v

)(√
u

v

∂

∂u
+

√
v

u

∂

∂v

)
=

=
u

v

∂2

∂u2
+ 2

∂2

∂u∂v
+
v

u

∂2

∂v2
,

and consequently

x2
∂2

∂x2
= u2

∂2

∂u2
− 2uv

∂2

∂u∂v
+ v2

∂2

∂v2
+ 2u

∂

∂u
,

−y2 ∂2

∂y2
= −u2 ∂2

∂u2
− 2uv

∂2

∂u∂v
− v2 ∂

2

∂v2
.

(3)

In conclusion, the canonical form of equation (1a) can be obtained by summing term
by term (3) and (2), hence resulting (upon division by a common factor −2v) in

2uϕuv + ϕv = 0. (4)

To obtain the general solution to (1a), set

Φ(u, v) := ϕv(u, v).
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Equation (4), written in terms of Φ, becomes

2uΦu + Φ = 0

and hence can be easily solved, for example with the method of separation of variables.
We obtain

Φ(u, v) =
k(v)√
u

and hence

ϕ(u, v) = f(u) +
g(v)√
u

where g is a primitive of k. The general solution to (1a), written in terms of the initial
variables (x, y), is then

ϕ(x, y) = f
(y
x

)
+

√
x

y
g(xy)

where f, g are two sufficiently regular (of class C2) arbitrary functions.

We now come to equation (1b). We have now

a(x, y) = x2, b(x, y) = −xy, c(x, y) = y2

from which we obtain
b2 − ac = 0,

hence the equation is of parabolic type. For simplicity, we assume to solve the equation
in the half-plane

Ω =
{

(x, y) ∈ R2 : x > 0
}
.

The only characteristic can be obtained by solving

dy

dx
= −xy

x2
= −y

x

namely
u = φ(x, y) = xy.

For the second characteristic, we choose

v = ψ(x, y) = x.

Inverting these relations yields to

x = v, y =
u

v
.
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Using the chain rule, we obtain

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
= y

∂

∂u
+

∂

∂v
=

=
u

v

∂

∂u
+

∂

∂v
,

∂

∂y
=
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
= x

∂

∂u
=

= v
∂

∂u
.

Notice that from this it follows that

x
∂

∂x
= u

∂

∂u
+ v

∂

∂v
,

y
∂

∂y
= u

∂

∂u
.

(5)

Using now Leibnitz rule and paying attention to the derivatives of the coefficients, we
can compute the second derivative operators. We obtain

∂2

∂x2
=

(
u

v

∂

∂u
+

∂

∂v

)(
u

v

∂

∂u
+

∂

∂v

)
=

=
u2

v2
∂2

∂u2
+ 2

u

v

∂2

∂u∂v
+

∂2

∂v2
,

∂2

∂x∂y
=

(
v
∂

∂u

)(
u

v

∂

∂u
+

∂

∂v

)
=

= u
∂2

∂u2
+ v

∂2

∂u∂v
+

∂

∂u
,

∂2

∂y2
=

(
v
∂

∂u

)(
v
∂

∂u

)
=

= v2
∂2

∂u2
,

and consequently

x2
∂2

∂x2
= u2

∂2

∂u2
+ 2uv

∂2

∂u∂v
+ v2

∂2

∂v2
,

−2xy
∂2

∂x∂y
= −2u2

∂2

∂u2
− 2uv

∂2

∂u∂v
− 2u

∂

∂u
,

y2
∂2

∂y2
= u2

∂2

∂u2

(6)

In conclusion, the canonical form of equation (1b) can be obtained by summing term
by term (6) and (5), hence resulting (upon division by a common factor v) in

v ϕvv + ϕv = 0. (7)
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To obtain the general solution to (1b), set

Φ(u, v) := ϕv(u, v).

Equation (7), written in terms of Φ, becomes

vΦv + Φ = 0

and hence can be easily solved, for example with the method of separation of variables.
We obtain

Φ(u, v) =
g(u)

v
and hence

ϕ(u, v) = f(u) + g(u) ln(v).

The general solution to (1b), written in terms of the initial variables (x, y), is then

ϕ(x, y) = f(xy) + g(xy) ln(x)

where f, g are two sufficiently regular (of class C2) arbitrary functions. ♦

2 Exercises from Chapter 3

Exercise 3.8.9 (The Gibbs phenomenon). Denote

Sn(x) =
4

π

n∑
k=1

sin((2k − 1)x)

2k − 1

the n-th partial sum of the Fourier series (3.5.35). Prove that

1. for any x ∈ (−π, π)
lim
n→∞

Sn(x) = sign x.

Hint: derive the following expression for the derivative:

S ′n(x) =
2

π

sin(2nx)

sin(x)
.

2. Verify that the n-th partial sum has a maximum at

xn =
π

2n
.

3. Prove that

Sn(xn) =
2

π

n∑
k=1

π

n
·

sin
(

(2k−1)π
2n

)
(2k−1)π

2n

−→ 2

π

∫ π

0

sin(x)

x
dx ≈ 1.17898

for n→∞.
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Thus for the trigonometric series (3.5.35)

lim sup
n→∞

Sn(x) > 1 for x > 0.

In a similar way one can prove that

lim inf
n→∞

Sn(x) < −1 for x < 0.

Solution. 1. Let’s prove the hinted form for the derivative S ′n(x). One has

S ′n(x) =
4

π

n∑
k=1

cos((2k − 1)x)

hence we need to prove that

2 sin(x) (cos(x) + cos(3x) + · · ·+ cos((2n− 1)x)) = sin(2nx) for all n ∈ N.

The statement is true for n = 1, as 2 sin(x) cos(x) = sin(2x). We then proceed by
induction, computing

2 sin(x) (cos(x) + cos(3x) + · · ·+ cos((2n− 1)x) + cos((2n+ 1)x)) =

= sin(2nx) + 2 sin(x) cos((2n+ 1)x) =

= sin(2nx) + 2 sin(x) (cos(2nx) cos(x)− sin(2nx) sin(x)) =

= sin(2nx)
(
1− 2 sin2(x)

)
+ cos(2nx) sin(2x) =

= sin(2nx) cos(2x) + cos(2nx) sin(2x) = sin(2(n+ 1)x).

We now have that

sin(2nx)

sin(x)
=

sin(2(n− 1)x) cos(2x) + cos(2(n− 1)x) sin(2x)

sin(x)
=

= cos(2x)
sin(2(n− 1)x)

sin(x)
+ 2 cos(2(n− 1)x) cos(x),

and consequently

S ′n(x) = cos(2x)S ′n−1(x) +
4

π
cos(2(n− 1)x) cos(x).

Fix x > 0. Since Sn(0) = 0 for all n ∈ N, integrating the above relation on [0, x] yields
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to

Sn(x) =

∫ x

0

cos(2t)S ′n−1(t) dt+
4

π

∫ x

0

cos(2(n− 1)t) cos(t) dt =

= [cos(2t)Sn−1(t)]
t=x
t=0 + 2

∫ x

0

sin(2t)Sn−1(t) dt+

+
4

π

1

2(n− 1)

∫ x2(n−1)

0

cos(y) cos

(
y

2(n− 1)

)
dy =

= cos(2x)Sn−1(x) + 2

∫ x

0

sin(2t)Sn−1(t) dt+

+
4

π

1

2(n− 1)

∫ x2(n−1)

0

cos(y) cos

(
y

2(n− 1)

)
dy.

Letting n→∞, we obtain that

S(x) := lim
n→∞

Sn(x) = cos(2x)S(x) + 2

∫ x

0

sin(2t)S(t) dt.

Upon differentiation of the above equality with respect to x, we get

S ′(x)(1− cos(2x)) + S(x)2 sin(2x) = 2 sin(2x)S(x) ⇐⇒ S ′(x)(1− cos(2x)) = 0.

Since the above equation should be satisfied for all x > 0, we obtain that S ′(x) ≡ 0, or
equivalently S(x) is constant. By evaluating

S(π/2) =
4

π

∞∑
k=1

(−1)k−1

2k − 1
= 1

we obtain S(x) = 1 for all x > 0. Since Sn is an odd function of S, also S is odd, so we
conclude that S(x) = sign x.

2. To verify that xn = π/2n is a maximum for Sn, it suffices to show that

S ′n(xn) = 0, S ′′n(xn) < 0.

We have

S ′n(xn) =
2

π

sin(π)

sin(π/2n)
= 0

while

S ′′n(xn) =
2

π

2n cos(2nx) sin(x)− sin(2nx) cos(x)

sin2(x)

∣∣∣∣∣
x=π/2n

=
2

π

−2n

sin(π/2n)
< 0.

3. Now notice that

Sn(xn) =
2

π

n∑
k=1

π

n
·

sin
(

(2k−1)π
2n

)
(2k−1)π

2n
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is a Riemann sum for the continuous function
2

π

sin(x)

x
on the interval (0, π), with

partition

{
0,
π

2n
,
3π

2n
, . . . ,

(2n− 1)π

2n
, π

}
. By definition of Riemann integral, this sum

converges to
2

π

∫ π

0

sin(x)

x
dx

as wanted. ♦

Exercise 3.8.3 bis (A variation on Exercise 3.8.3). For few instants of time t ≥ 0
make a graph of the solution u(x, t) to the wave equation on the half line x ≥ 0 with
Dirichlet boundary condition

u(0, t) = 0

and with the initial data

u(x, 0) = φ(x), ut(x, 0) = 0, x > 0

where the graph of the function φ(x) is an isosceles triangle of height 1 and base [l, 3l].

Solution. The analytic form of the solution can be computed from D’Alembert formula,
extending the initial data on the half line {x < 0} as an odd function. We plot here the
graph of the solution with a continuous blue line. The yellow and purple dotted lines
represent respectively the retarded and advanced wave, with halved height. ♦
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