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Exercises are numbered as in the lecture notes of the course.
Exercise 4.5.1. Find a function u(x,y) satisfying
Au = z? — o>
for r < a and the boundary condition u}r:a =0.
Solution. Given the symmetry of the problem, we use polar coordinates
{ZE:TC_OSSD’ r € [0,+00), ¢ €]0,2m),
y =rsing,

and look for solutions to the equation

Au = r*(cos® ¢ — sin® p) = r? cos 2

in the form -
u(r,p) = ag(r) + Z(an(r) cosny + B, (r) sinnp)

on which we will then impose the boundary condition u(a, ¢) = 0 for all ¢.
The Laplace operator in polar coordinates has the form

2 10 102

A=— -
or? 5 ror * r2 0p?
We compute
u(r, @) = ap(r) + Z ) cos g + B, (r) sin ng),
Uy (1, 0) = (1) + Z v (r)cosnp + B (r) sinng),
U (T Z n*(ay, (1) cosny + B, (1) sinny).



Substituting in (1) we obtain

af(r) + 2
+Z (aZ(T) + %O/n(T) - :—jan(T)> cos Ny
n=1
o 2
+Z <BZ(7’) + %5;(7“) - %@AT)) sin ng = r? cos 2,
n=1

from which we deduce the following infinite number of systems of ODEs

" 1 / —
C(0(74) + ;CYO(T> - 07 (4)
a()(a) - 07
1 n? r? ifn=2
" + = - —a, _ )
an(r) + Jan(r) = T5aa(r) {O otherwise, (5)
an(a) =0,
1 1 / n2
Bn(a) = 0.
The general solution to (4) is
ap(r) = Clog 2. (7)

In order for this function to be defined on the whole disk we have to set C = 0: hence
ap(r) = 0. Moreover, the solution to (5) with n # 2, as well as to (6), is a,(r) = 0,
n # 2, and f,(r) = 0.

We now look for the solution to

0/2(T) - T_QO‘Q(T) =r? (8)

The solution to the associated homogeneous equation has the form Ar? + Br=2. Again,
requiring that this function be regular at the origin yields to B = 0. We now look for a
particular solution in the class of polynomial functions: we find

7.4

a(r) = 5

Hence the general solution to the equation in the system (8) will be
1

a(r) = Ar? + Er4.



Imposing the condition ay(a) = 0 we obtain A = —a?/12, and thus

as(r) = ET‘Q(T‘Q —a?).

In conclusion, the solution u to the Laplace problem under consideration is
1
u(r, @) = ETZ(T2 — a?) cos 2,

namely, in Euclidean coordinates,

1

u(@,y) = o5 (@' —y' —a*(@* —y?)) .

The graph of this function, for a = 3, is depicted here.

¢
Exercise 4.5.2. Find a harmonic function u(r, ) on the annular domain
Cop ={(r,p) ra<r <b}
with the boundary conditions
u(a, ) =1, u(b,p) = cos’p. (9)



Solution. Given the symmetry of the domain, we look for solutions in the form (2) on
which we will impose the boundary conditions (9).
The first boundary condition implies

ap(a) =1 and au(a) =pF(a) =0 forn=1,2,...

Rewrite cos? ¢ = % + %cos 2¢p. Using the expression for w, computed above and the
second condition in (9) we obtain

1
ay(b) = 3 ay(b) == and «)(b)=0 forn+#0,2.
Computing u,, and uy, and substituting in the Laplace equation, using the expression

(3) for the Laplace operator in polar coordinates, we obtain the following systems of
second order ODEs:

1
ag(r) + —ag(r) =0,
ap(a) =1, (10)
1
C(E)<b> = 57
( 2
) + ~0l(r) — yan(r) =
an(a) =0, (11)
() = % se n =2,
\a" ~ |0 altrimenti,
( 1 2
1)+ ) = 5 Bu(r) =0,
Bu(a) =0, (12)
\ﬁ;(b) =0.

The solution to (10) is given by
b r
1+ = log—.
+ 2 & a
(Notice that this time this solution is admissible, since the annulus C,; doesn’t contain

the origin.) The solution to (12) vanishes identically for all n, as well as the one to (11).
The only case we have to treat more carefully is given by

! 1 !
ay(r) + ;042(7“) - 50@(7“) =0,
a2<(l) = 07
ab(b) = %



The general solution to this type of equation is of the form
as(r) = Ar? + Br2.

Imposing the boundary conditions we find the following values for the constants A and

B:
b3 a*b?

- B=—————.
4 (a* +b*)’ 4 (a* 4 b*)
Hence the solution reads
)= o @

We only have to substitute the functions that we found in (2), which yields to the
solution to the Laplace problem:

4b3

b b a
u(r,gp):l—i——logg—}—( 2

—2 2. 13
2 o)A@ ot )COS 7 (13)

The graph of this function is depicted here, for a = 1 and b = 3.

Exercise 4.5.3. Find the solution u(x,y) to the Dirichlet b.v.p. in the rectangle

Ripy={(r,y):0<z<a, 0<y<b}



satisfying the boundary conditions

u(0,y) = Ay(b—vy), wu(a,y) =0, wu(z,0)= Bsin E, u(z,b) = 0. (14)

a
[Hint: use separation of variables in Euclidean coordinates.]

Solution. It suffices to find two functions w; and wusy satisfying the following Dirichlet
problems:

Aup =0 for (z,y) € Rap,
u1(07 y) = Ay(b - y)7 ul(a’ y) = 07
uq(z,0) =0, uy(z,b) =0,

and
Aug =0 for (z,y) € Ry,
u2(0>y) = 07 Uz(a, y) = 07

us(z,0) = Bsin (Zz), us(z,b) = 0.

Indeed, by the linearity of the Laplace problem the function u := u; 4 uy will solve the
Dirichlet problem stated in the Exercise.
We look for the function u; in the form

uy(z,y) = X1(2)Y1(y)
following the hint in the text. One has
Au(z,y) = X{(2)Yi(y) + X1(2)Y{'(y) = 0

which yields to
Xi(@) _ Y'()

Xy () a Yi(y)
where ) is a constant (indeed the first ratio depends only on z while the second depends
only on y). Imposing also the boundary conditions, we obtain that the function Y; solves

=A

Yi'(y) = —=AVi(y) for0<y<b,
Y1(0) =0 =Y (b),

hence we deduce that
T \2 . (T
A=A\, = <3n> and Yi(y) = C,sin <gny) , néeN.
On the other hand, the solution to the equation
X (z) =\Xi(z) for0<z<a
will be of the form

Xi(z) = D, exp (%nx) + D! exp (—%naz) :



Imposing the boundary condition
Xl (a) =0

yields to

D! 2 2
0= D,exp (%na) <1 + D_: exp (—%na)) = D/ =—exp <%na> D,

and hence - -
Xi(z) = D, <eXp (577,56) — exp (—En(:c - 2a))> :

We have thus obtained a family of solutions, parametrized by n € N. By linearity,
the sum of any two of these solutions is again a solution to the Laplace problem: as a
consequence, the general form of the function u; will be

= ;An <exp (%nx) — exp <—%n(x - 2a)>> sin (%ny) :

The coefficients A,, = C,D,, can now be computed by imposing the last boundary
condition, namely

Ay(b—y) = u1(0,y) ZA (1 — exp (%na)) sin (%ny) )

In order to do this, we compute the Fourier coefficients of the function f(y) = Ay(b—y)
extended by oddity on the interval (—b,b); we want indeed to expand this function in a
series of 2b-periodic sines. One has

% Uobf(y) sin (%ny> dy + /_Z(—f(—y)) sin (%ny) dy} =

2 [t . (T
= 5/0 Ay(b—y) sin (Eny> dy =

_ A y(b —y) cos <zny> " — /b(b — 2y) cos <zny) dy| =
™ b =0 0 b
24b [ 7T y=b b T
= b— 2y)sin ( — 2 in(— dy| =
2 ( y) sin <bny> - + /0 sin (bny> y]
4AY? N Y | .
=~ (5)] =~ (U1 =
0 if n is even,
— A 2
83 b if n is odd.
™n



We conclude that

0 if n is even,
A, = { 8Ab? 1

mnd 1 — exp( na)

if n is odd,

and thus

f: 8A?  exp (F(2n—1)z) —exp (—5(2n — 1)(z — 2a))
— 73(2n — 1)3 1 —exp (¥(2n — 1)a)
- sin (%(Qn - 1)y> .
To find the function us, we proceed in the same way. We impose the form

uz(w,y) = Xo(2)Ya(y).

We find again
X)) YY) _
Xo(z) Ya(y)
with constant p. Imposing the boundary conditions, we obtain that X, solves

X(z) = —pXs(x) for 0 <z <a,
X5(0) =0 = Xs(a),

hence we deduce

T \2 i T
= by = (—n) and Xy(z) = E, sin (—nx) , néeN.
a

a

Arguing as before, we obtain also the solution to the problem

Yy (y) = pnYa(z) per 0 <y <b,
Ya(b) =0

in the form
Ya(y) = Fh, (eXp (gny) — exp (—gn(y - 25))) -

The general form of the function us will thus be

x,y) = iBn sin <§nx) <exp (gny> — exp <—§n(y - 2b)>> :

The coefficients B,, = E,F, can be now computed by imposing the last boundary
condition, namely

B'sin <2x> = uy(z,0) = nio; B, (1 — exp (%nb)) sin <gnx> :



We immediately obtain

0 ifn#1,
= B
Bn —— ifn=1
1 —exp (fb)

In conclusion

™

us(x,y) = Bsin <EI> exp (3y) —exp (—5ly — 20)) :

1 —exp (%”b)

The following figure illustrates the graph of the solution u(x,y) = ui(x,y) + uz(x,y)
for the following values of the parameters:

A=1 B=10, a=5 b=A4.

For “computational” reasons, only the first 5 terms in the series defining u; have been
computed.




