Ist. di Fisica Matematica mod. A Third exercise session

Massimiliano Ronzani (mronzani@sissa.it)

November 11th, 2015

Exercises are numbered as in the lecture notes of the course.
Exercise 4.5.1. Find a function $u(x, y)$ satisfying

$$
\triangle u=x^{2}-y^{2}
$$

for $r<a$ and the boundary condition $\left.u\right|_{r=a}=0$.
Solution. Given the symmetry of the problem, we use polar coordinates

$$
\left\{\begin{array}{l}
x=r \cos \varphi, \\
y=r \sin \varphi,
\end{array} \quad r \in[0,+\infty), \quad \varphi \in[0,2 \pi),\right.
$$

and look for solutions to the equation

$$
\begin{equation*}
\triangle u=r^{2}\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)=r^{2} \cos 2 \varphi \tag{1}
\end{equation*}
$$

in the form

$$
\begin{equation*}
u(r, \varphi)=\alpha_{0}(r)+\sum_{n=1}^{\infty}\left(\alpha_{n}(r) \cos n \varphi+\beta_{n}(r) \sin n \varphi\right) \tag{2}
\end{equation*}
$$

on which we will then impose the boundary condition $u(a, \varphi)=0$ for all φ.
The Laplace operator in polar coordinates has the form

$$
\begin{equation*}
\triangle=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} . \tag{3}
\end{equation*}
$$

We compute

$$
\begin{aligned}
& u_{r}(r, \varphi)=\alpha_{0}^{\prime}(r)+\sum_{n=1}^{\infty}\left(\alpha_{n}^{\prime}(r) \cos n \varphi+\beta_{n}^{\prime}(r) \sin n \varphi\right), \\
& u_{r r}(r, \varphi)=\alpha_{0}^{\prime \prime}(r)+\sum_{n=1}^{\infty}\left(\alpha_{n}^{\prime \prime}(r) \cos n \varphi+\beta_{n}^{\prime \prime}(r) \sin n \varphi\right), \\
& u_{\varphi \varphi}(r, \varphi)=-\sum_{n=1}^{\infty} n^{2}\left(\alpha_{n}(r) \cos n \varphi+\beta_{n}(r) \sin n \varphi\right) .
\end{aligned}
$$

Substituting in (1) we obtain

$$
\begin{aligned}
& \alpha_{0}^{\prime \prime}(r)+\frac{\alpha_{0}^{\prime}(r)}{r} \\
+ & \sum_{n=1}^{\infty}\left(\alpha_{n}^{\prime \prime}(r)+\frac{1}{r} \alpha_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} \alpha_{n}(r)\right) \cos n \varphi \\
+ & \sum_{n=1}^{\infty}\left(\beta_{n}^{\prime \prime}(r)+\frac{1}{r} \beta_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} \beta_{n}(r)\right) \sin n \varphi=r^{2} \cos 2 \varphi,
\end{aligned}
$$

from which we deduce the following infinite number of systems of ODEs

$$
\begin{gather*}
\left\{\begin{array}{l}
\alpha_{0}^{\prime \prime}(r)+\frac{1}{r} \alpha_{0}^{\prime}(r)=0, \\
\alpha_{0}(a)=0,
\end{array}\right. \tag{4}\\
\left\{\begin{array}{l}
\alpha_{n}^{\prime \prime}(r)+\frac{1}{r} \alpha_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} \alpha_{n}(r)= \begin{cases}r^{2} & \text { if } n=2, \\
0 & \text { otherwise }, \\
\alpha_{n}(a)=0,\end{cases} \\
\left\{\begin{array}{l}
\beta_{n}^{\prime \prime}(r)+\frac{1}{r} \beta_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} \beta_{n}(r)=0, \\
\beta_{n}(a)=0 .
\end{array}\right.
\end{array} . \begin{array}{l}
\text { a }
\end{array}\right. \tag{5}\\
\hline \tag{6}
\end{gather*}
$$

The general solution to (4) is

$$
\begin{equation*}
\alpha_{0}(r)=C \log \frac{r}{a} . \tag{7}
\end{equation*}
$$

In order for this function to be defined on the whole disk we have to set $C=0$: hence $\alpha_{0}(r)=0$. Moreover, the solution to (5) with $n \neq 2$, as well as to (6), is $\alpha_{n}(r)=0$, $n \neq 2$, and $\beta_{n}(r)=0$.

We now look for the solution to

$$
\left\{\begin{array}{l}
\alpha_{2}^{\prime \prime}(r)+\frac{1}{r} \alpha_{2}^{\prime}(r)-\frac{4}{r^{2}} \alpha_{2}(r)=r^{2} \tag{8}\\
\alpha_{2}(a)=0
\end{array}\right.
$$

The solution to the associated homogeneous equation has the form $A r^{2}+B r^{-2}$. Again, requiring that this function be regular at the origin yields to $B=0$. We now look for a particular solution in the class of polynomial functions: we find

$$
\overline{\alpha_{2}}(r)=\frac{r^{4}}{12}
$$

Hence the general solution to the equation in the system (8) will be

$$
\alpha_{2}(r)=A r^{2}+\frac{1}{12} r^{4} .
$$

Imposing the condition $\alpha_{2}(a)=0$ we obtain $A=-a^{2} / 12$, and thus

$$
\alpha_{2}(r)=\frac{1}{12} r^{2}\left(r^{2}-a^{2}\right) .
$$

In conclusion, the solution u to the Laplace problem under consideration is

$$
u(r, \varphi)=\frac{1}{12} r^{2}\left(r^{2}-a^{2}\right) \cos 2 \varphi,
$$

namely, in Euclidean coordinates,

$$
u(x, y)=\frac{1}{12}\left(x^{4}-y^{4}-a^{2}\left(x^{2}-y^{2}\right)\right) .
$$

The graph of this function, for $a=3$, is depicted here.

Exercise 4.5.2. Find a harmonic function $u(r, \varphi)$ on the annular domain

$$
C_{a, b}=\{(r, \varphi): a<r<b\}
$$

with the boundary conditions

$$
\begin{equation*}
u(a, \varphi)=1, \quad u_{r}(b, \varphi)=\cos ^{2} \varphi . \tag{9}
\end{equation*}
$$

Solution. Given the symmetry of the domain, we look for solutions in the form (2) on which we will impose the boundary conditions (9).

The first boundary condition implies

$$
\alpha_{0}(a)=1 \quad \text { and } \quad \alpha_{n}(a)=\beta_{n}(a)=0 \quad \text { for } n=1,2, \ldots
$$

Rewrite $\cos ^{2} \varphi=\frac{1}{2}+\frac{1}{2} \cos 2 \varphi$. Using the expression for u_{r} computed above and the second condition in (9) we obtain

$$
\alpha_{0}^{\prime}(b)=\frac{1}{2}, \quad \alpha_{2}^{\prime}(b)=\frac{1}{2} \quad \text { and } \quad \alpha_{n}^{\prime}(b)=0 \quad \text { for } n \neq 0,2
$$

Computing $u_{r r}$ and $u_{\varphi \varphi}$ and substituting in the Laplace equation, using the expression (3) for the Laplace operator in polar coordinates, we obtain the following systems of second order ODEs:

$$
\begin{gather*}
\left\{\begin{array}{l}
\alpha_{0}^{\prime \prime}(r)+\frac{1}{r} \alpha_{0}^{\prime}(r)=0 \\
\alpha_{0}(a)=1, \\
\alpha_{0}^{\prime}(b)=\frac{1}{2}
\end{array}\right. \tag{10}\\
\left\{\begin{array}{l}
\alpha_{n}^{\prime \prime}(r)+\frac{1}{r} \alpha_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} \alpha_{n}(r)=0, \\
\alpha_{n}(a)=0 \\
\alpha_{n}^{\prime}(b)= \begin{cases}\frac{1}{2} & \text { se } n=2 \\
0 & \text { altrimenti }\end{cases} \\
\left\{\begin{array}{l}
\beta_{n}^{\prime \prime}(r)+\frac{1}{r} \beta_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} \beta_{n}(r)=0 \\
\beta_{n}(a)=0 \\
\beta_{n}^{\prime}(b)=0
\end{array}\right.
\end{array}\right. \tag{11}
\end{gather*}
$$

The solution to (10) is given by

$$
1+\frac{b}{2} \log \frac{r}{a} .
$$

(Notice that this time this solution is admissible, since the annulus $C_{a, b}$ doesn't contain the origin.) The solution to (12) vanishes identically for all n, as well as the one to (11). The only case we have to treat more carefully is given by

$$
\left\{\begin{array}{l}
\alpha_{2}^{\prime \prime}(r)+\frac{1}{r} \alpha_{2}^{\prime}(r)-\frac{4}{r^{2}} \alpha_{2}(r)=0 \\
\alpha_{2}(a)=0 \\
\alpha_{2}^{\prime}(b)=\frac{1}{2}
\end{array}\right.
$$

The general solution to this type of equation is of the form

$$
\alpha_{2}(r)=A r^{2}+B r^{-2} .
$$

Imposing the boundary conditions we find the following values for the constants A and B :

$$
A=\frac{b^{3}}{4\left(a^{4}+b^{4}\right)}, \quad B=-\frac{a^{4} b^{3}}{4\left(a^{4}+b^{4}\right)}
$$

Hence the solution reads

$$
\alpha_{2}(r)=\frac{b^{3}}{4\left(a^{4}+b^{4}\right)} r^{2}-\frac{a^{4} b^{3}}{4\left(a^{4}+b^{4}\right)} r^{-2}
$$

We only have to substitute the functions that we found in (2), which yields to the solution to the Laplace problem:

$$
\begin{equation*}
u(r, \varphi)=1+\frac{b}{2} \log \frac{r}{a}+\left(\frac{b^{3}}{4\left(a^{4}+b^{4}\right)} r^{2}-\frac{a^{4} b^{3}}{4\left(a^{4}+b^{4}\right)} r^{-2}\right) \cos 2 \varphi \tag{13}
\end{equation*}
$$

The graph of this function is depicted here, for $a=1$ and $b=3$.

Exercise 4.5.3. Find the solution $u(x, y)$ to the Dirichlet b.v.p. in the rectangle

$$
R_{a, b}=\{(x, y): 0 \leq x \leq a, \quad 0 \leq y \leq b\}
$$

satisfying the boundary conditions

$$
\begin{equation*}
u(0, y)=A y(b-y), \quad u(a, y)=0, \quad u(x, 0)=B \sin \frac{\pi x}{a}, \quad u(x, b)=0 \tag{14}
\end{equation*}
$$

[Hint: use separation of variables in Euclidean coordinates.]
Solution. It suffices to find two functions u_{1} and u_{2} satisfying the following Dirichlet problems:

$$
\begin{cases}\triangle u_{1}=0 & \text { for }(x, y) \in R_{a, b} \\ u_{1}(0, y)=A y(b-y), & u_{1}(a, y)=0 \\ u_{1}(x, 0)=0, & u_{1}(x, b)=0\end{cases}
$$

and

$$
\begin{cases}\triangle u_{2}=0 & \text { for }(x, y) \in R_{a, b}, \\ u_{2}(0, y)=0, & u_{2}(a, y)=0, \\ u_{2}(x, 0)=B \sin \left(\frac{\pi}{a} x\right), & u_{2}(x, b)=0 .\end{cases}
$$

Indeed, by the linearity of the Laplace problem the function $u:=u_{1}+u_{2}$ will solve the Dirichlet problem stated in the Exercise.

We look for the function u_{1} in the form

$$
u_{1}(x, y)=X_{1}(x) Y_{1}(y)
$$

following the hint in the text. One has

$$
\triangle u_{1}(x, y)=X_{1}^{\prime \prime}(x) Y_{1}(y)+X_{1}(x) Y_{1}^{\prime \prime}(y)=0
$$

which yields to

$$
\frac{X_{1}^{\prime \prime}(x)}{X_{1}(x)}=-\frac{Y_{1}^{\prime \prime}(y)}{Y_{1}(y)}=\lambda
$$

where λ is a constant (indeed the first ratio depends only on x while the second depends only on y). Imposing also the boundary conditions, we obtain that the function Y_{1} solves

$$
\left\{\begin{array}{l}
Y_{1}^{\prime \prime}(y)=-\lambda Y_{1}(y) \quad \text { for } 0 \leq y \leq b, \\
Y_{1}(0)=0=Y_{1}(b),
\end{array}\right.
$$

hence we deduce that

$$
\lambda=\lambda_{n}=\left(\frac{\pi}{b} n\right)^{2} \quad \text { and } \quad Y_{1}(y)=C_{n} \sin \left(\frac{\pi}{b} n y\right), \quad n \in \mathbb{N} .
$$

On the other hand, the solution to the equation

$$
X_{1}^{\prime \prime}(x)=\lambda_{n} X_{1}(x) \quad \text { for } 0 \leq x \leq a
$$

will be of the form

$$
X_{1}(x)=D_{n} \exp \left(\frac{\pi}{b} n x\right)+D_{n}^{\prime} \exp \left(-\frac{\pi}{b} n x\right) .
$$

Imposing the boundary condition

$$
X_{1}(a)=0
$$

yields to

$$
0=D_{n} \exp \left(\frac{\pi}{b} n a\right)\left(1+\frac{D_{n}^{\prime}}{D_{n}} \exp \left(-\frac{2 \pi}{b} n a\right)\right) \quad \Longrightarrow \quad D_{n}^{\prime}=-\exp \left(\frac{2 \pi}{b} n a\right) D_{n}
$$

and hence

$$
X_{1}(x)=D_{n}\left(\exp \left(\frac{\pi}{b} n x\right)-\exp \left(-\frac{\pi}{b} n(x-2 a)\right)\right) .
$$

We have thus obtained a family of solutions, parametrized by $n \in \mathbb{N}$. By linearity, the sum of any two of these solutions is again a solution to the Laplace problem: as a consequence, the general form of the function u_{1} will be

$$
u_{1}(x, y)=\sum_{n=1}^{\infty} A_{n}\left(\exp \left(\frac{\pi}{b} n x\right)-\exp \left(-\frac{\pi}{b} n(x-2 a)\right)\right) \sin \left(\frac{\pi}{b} n y\right) .
$$

The coefficients $A_{n}=C_{n} D_{n}$ can now be computed by imposing the last boundary condition, namely

$$
A y(b-y)=u_{1}(0, y)=\sum_{n=1}^{\infty} A_{n}\left(1-\exp \left(\frac{2 \pi}{b} n a\right)\right) \sin \left(\frac{\pi}{b} n y\right)
$$

In order to do this, we compute the Fourier coefficients of the function $f(y)=A y(b-y)$ extended by oddity on the interval $(-b, b)$; we want indeed to expand this function in a series of $2 b$-periodic sines. One has

$$
\begin{aligned}
\frac{1}{b} & {\left[\int_{0}^{b} f(y) \sin \left(\frac{\pi}{b} n y\right) d y+\int_{-b}^{0}(-f(-y)) \sin \left(\frac{\pi}{b} n y\right) d y\right]=} \\
& =\frac{2}{b} \int_{0}^{b} A y(b-y) \sin \left(\frac{\pi}{b} n y\right) d y= \\
& =-\frac{2 A}{\pi n}\left[\left.y(b-y) \cos \left(\frac{\pi}{b} n y\right)\right|_{y=0} ^{y=b}-\int_{0}^{b}(b-2 y) \cos \left(\frac{\pi}{b} n y\right) d y\right]= \\
& =\frac{2 A b}{\pi^{2} n^{2}}\left[\left.(b-2 y) \sin \left(\frac{\pi}{b} n y\right)\right|_{y=0} ^{y=b}+2 \int_{0}^{b} \sin \left(\frac{\pi}{b} n y\right) d y\right]= \\
& =-\left.\frac{4 A b^{2}}{\pi^{3} n^{3}} \cos \left(\frac{\pi}{b} n y\right)\right|_{y=0} ^{y=b}=-\frac{4 A b^{2}}{\pi^{3} n^{3}}\left((-1)^{n}-1\right)= \\
& = \begin{cases}0 & \text { if } n \text { is even, } \\
\frac{8 A b^{2}}{\pi^{3} n^{3}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

We conclude that

$$
A_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{8 A b^{2}}{\pi^{3} n^{3}} \frac{1}{1-\exp \left(\frac{2 \pi}{b} n a\right)} & \text { if } n \text { is odd }\end{cases}
$$

and thus

$$
\begin{aligned}
u_{1}(x, y)=\sum_{n=1}^{\infty} \frac{8 A b^{2}}{\pi^{3}(2 n-1)^{3}} \frac{\exp \left(\frac{\pi}{b}(2 n-1) x\right)-\exp \left(-\frac{\pi}{b}(2 n-1)(x-2 a)\right)}{1-\exp \left(\frac{2 \pi}{b}(2 n-1) a\right)} \\
\cdot \sin \left(\frac{\pi}{b}(2 n-1) y\right) .
\end{aligned}
$$

To find the function u_{2}, we proceed in the same way. We impose the form

$$
u_{2}(x, y)=X_{2}(x) Y_{2}(y) .
$$

We find again

$$
-\frac{X_{2}^{\prime \prime}(x)}{X_{2}(x)}=\frac{Y_{2}^{\prime \prime}(y)}{Y_{2}(y)}=\mu
$$

with constant μ. Imposing the boundary conditions, we obtain that X_{2} solves

$$
\left\{\begin{array}{l}
X_{2}^{\prime \prime}(x)=-\mu X_{2}(x) \quad \text { for } 0 \leq x \leq a, \\
X_{2}(0)=0=X_{2}(a),
\end{array}\right.
$$

hence we deduce

$$
\mu=\mu_{n}=\left(\frac{\pi}{a} n\right)^{2} \quad \text { and } \quad X_{2}(x)=E_{n} \sin \left(\frac{\pi}{a} n x\right), \quad n \in \mathbb{N} .
$$

Arguing as before, we obtain also the solution to the problem

$$
\left\{\begin{array}{l}
Y_{2}^{\prime \prime}(y)=\mu_{n} Y_{2}(x) \quad \text { per } 0 \leq y \leq b, \\
Y_{2}(b)=0
\end{array}\right.
$$

in the form

$$
Y_{2}(y)=F_{n}\left(\exp \left(\frac{\pi}{a} n y\right)-\exp \left(-\frac{\pi}{a} n(y-2 b)\right)\right) .
$$

The general form of the function u_{2} will thus be

$$
u_{2}(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{\pi}{a} n x\right)\left(\exp \left(\frac{\pi}{a} n y\right)-\exp \left(-\frac{\pi}{a} n(y-2 b)\right)\right) .
$$

The coefficients $B_{n}=E_{n} F_{n}$ can be now computed by imposing the last boundary condition, namely

$$
B \sin \left(\frac{\pi}{a} x\right)=u_{2}(x, 0)=\sum_{n=1}^{\infty} B_{n}\left(1-\exp \left(\frac{2 \pi}{a} n b\right)\right) \sin \left(\frac{\pi}{a} n x\right) .
$$

We immediately obtain

$$
B_{n}= \begin{cases}0 & \text { if } n \neq 1 \\ \frac{B}{1-\exp \left(\frac{2 \pi}{a} b\right)} & \text { if } n=1\end{cases}
$$

In conclusion

$$
u_{2}(x, y)=B \sin \left(\frac{\pi}{a} x\right) \frac{\exp \left(\frac{\pi}{a} y\right)-\exp \left(-\frac{\pi}{a}(y-2 b)\right)}{1-\exp \left(\frac{2 \pi}{a} b\right)} .
$$

The following figure illustrates the graph of the solution $u(x, y)=u_{1}(x, y)+u_{2}(x, y)$ for the following values of the parameters:

$$
A=1, \quad B=10, \quad a=5, \quad b=4 .
$$

For "computational" reasons, only the first 5 terms in the series defining u_{1} have been computed.

