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Exercises are numbered as in the lecture notes of the course.

Exercise 4.5.1. Find a function u(x, y) satisfying

4u = x2 − y2

for r < a and the boundary condition u
∣∣
r=a

= 0.

Solution. Given the symmetry of the problem, we use polar coordinates{
x = r cosϕ,

y = r sinϕ,
r ∈ [0,+∞), ϕ ∈ [0, 2π),

and look for solutions to the equation

4u = r2(cos2 ϕ− sin2 ϕ) = r2 cos 2ϕ (1)

in the form

u(r, ϕ) = α0(r) +
∞∑
n=1

(αn(r) cosnϕ+ βn(r) sinnϕ) (2)

on which we will then impose the boundary condition u(a, ϕ) = 0 for all ϕ.
The Laplace operator in polar coordinates has the form

4 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
. (3)

We compute

ur(r, ϕ) = α′0(r) +
∞∑
n=1

(α′n(r) cosnϕ+ β′n(r) sinnϕ),

urr(r, ϕ) = α′′0(r) +
∞∑
n=1

(α′′n(r) cosnϕ+ β′′n(r) sinnϕ),

uϕϕ(r, ϕ) = −
∞∑
n=1

n2(αn(r) cosnϕ+ βn(r) sinnϕ).
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Substituting in (1) we obtain

α′′0(r) +
α′0(r)

r

+
∞∑
n=1

(
α′′n(r) +

1

r
α′n(r)− n2

r2
αn(r)

)
cosnϕ

+
∞∑
n=1

(
β′′n(r) +

1

r
β′n(r)− n2

r2
βn(r)

)
sinnϕ = r2 cos 2ϕ,

from which we deduce the following infinite number of systems of ODEsα′′0(r) +
1

r
α′0(r) = 0,

α0(a) = 0,
(4)

α
′′
n(r) +

1

r
α′n(r)− n2

r2
αn(r) =

{
r2 if n = 2,

0 otherwise,

αn(a) = 0,

(5)

β′′n(r) +
1

r
β′n(r)− n2

r2
βn(r) = 0,

βn(a) = 0.
(6)

The general solution to (4) is

α0(r) = C log
r

a
. (7)

In order for this function to be defined on the whole disk we have to set C = 0: hence
α0(r) = 0. Moreover, the solution to (5) with n 6= 2, as well as to (6), is αn(r) = 0,
n 6= 2, and βn(r) = 0.

We now look for the solution toα′′2(r) +
1

r
α′2(r)−

4

r2
α2(r) = r2

α2(a) = 0
(8)

The solution to the associated homogeneous equation has the form Ar2 +Br−2. Again,
requiring that this function be regular at the origin yields to B = 0. We now look for a
particular solution in the class of polynomial functions: we find

α2(r) =
r4

12
.

Hence the general solution to the equation in the system (8) will be

α2(r) = Ar2 +
1

12
r4.
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Imposing the condition α2(a) = 0 we obtain A = −a2/12, and thus

α2(r) =
1

12
r2(r2 − a2).

In conclusion, the solution u to the Laplace problem under consideration is

u(r, ϕ) =
1

12
r2(r2 − a2) cos 2ϕ,

namely, in Euclidean coordinates,

u(x, y) =
1

12

(
x4 − y4 − a2(x2 − y2)

)
.

The graph of this function, for a = 3, is depicted here.

♦
Exercise 4.5.2. Find a harmonic function u(r, ϕ) on the annular domain

Ca,b = {(r, ϕ) : a < r < b}

with the boundary conditions

u(a, ϕ) = 1, ur(b, ϕ) = cos2 ϕ. (9)
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Solution. Given the symmetry of the domain, we look for solutions in the form (2) on
which we will impose the boundary conditions (9).

The first boundary condition implies

α0(a) = 1 and αn(a) = βn(a) = 0 for n = 1, 2, . . .

Rewrite cos2 ϕ = 1
2

+ 1
2

cos 2ϕ. Using the expression for ur computed above and the
second condition in (9) we obtain

α′0(b) =
1

2
, α′2(b) =

1

2
and α′n(b) = 0 for n 6= 0, 2.

Computing urr and uϕϕ and substituting in the Laplace equation, using the expression
(3) for the Laplace operator in polar coordinates, we obtain the following systems of
second order ODEs: 

α′′0(r) +
1

r
α′0(r) = 0,

α0(a) = 1,

α′0(b) =
1

2
,

(10)


α′′n(r) +

1

r
α′n(r)− n2

r2
αn(r) = 0,

αn(a) = 0,

α′n(b) =

{
1
2

se n = 2,

0 altrimenti,

(11)


β′′n(r) +

1

r
β′n(r)− n2

r2
βn(r) = 0,

βn(a) = 0,

β′n(b) = 0.

(12)

The solution to (10) is given by

1 +
b

2
log

r

a
.

(Notice that this time this solution is admissible, since the annulus Ca,b doesn’t contain
the origin.) The solution to (12) vanishes identically for all n, as well as the one to (11).
The only case we have to treat more carefully is given by

α′′2(r) +
1

r
α′2(r)−

4

r2
α2(r) = 0,

α2(a) = 0,

α′2(b) = 1
2
.
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The general solution to this type of equation is of the form

α2(r) = Ar2 +Br−2.

Imposing the boundary conditions we find the following values for the constants A and
B:

A =
b3

4 (a4 + b4)
, B = − a4b3

4 (a4 + b4)
.

Hence the solution reads

α2(r) =
b3

4 (a4 + b4)
r2 − a4b3

4 (a4 + b4)
r−2.

We only have to substitute the functions that we found in (2), which yields to the
solution to the Laplace problem:

u(r, ϕ) = 1 +
b

2
log

r

a
+

(
b3

4 (a4 + b4)
r2 − a4b3

4 (a4 + b4)
r−2
)

cos 2ϕ. (13)

The graph of this function is depicted here, for a = 1 and b = 3.

♦

Exercise 4.5.3. Find the solution u(x, y) to the Dirichlet b.v.p. in the rectangle

Ra,b = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}
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satisfying the boundary conditions

u(0, y) = Ay(b− y), u(a, y) = 0, u(x, 0) = B sin
πx

a
, u(x, b) = 0. (14)

[Hint: use separation of variables in Euclidean coordinates.]

Solution. It suffices to find two functions u1 and u2 satisfying the following Dirichlet
problems: 

4u1 = 0 for (x, y) ∈ Ra,b,

u1(0, y) = Ay(b− y), u1(a, y) = 0,

u1(x, 0) = 0, u1(x, b) = 0,

and 
4u2 = 0 for (x, y) ∈ Ra,b,

u2(0, y) = 0, u2(a, y) = 0,

u2(x, 0) = B sin
(
π
a
x
)
, u2(x, b) = 0.

Indeed, by the linearity of the Laplace problem the function u := u1 + u2 will solve the
Dirichlet problem stated in the Exercise.

We look for the function u1 in the form

u1(x, y) = X1(x)Y1(y)

following the hint in the text. One has

4u1(x, y) = X ′′1 (x)Y1(y) +X1(x)Y ′′1 (y) = 0

which yields to
X ′′1 (x)

X1(x)
= −Y

′′
1 (y)

Y1(y)
= λ

where λ is a constant (indeed the first ratio depends only on x while the second depends
only on y). Imposing also the boundary conditions, we obtain that the function Y1 solves{

Y ′′1 (y) = −λY1(y) for 0 ≤ y ≤ b,

Y1(0) = 0 = Y1(b),

hence we deduce that

λ = λn =
(π
b
n
)2

and Y1(y) = Cn sin
(π
b
ny
)
, n ∈ N.

On the other hand, the solution to the equation

X ′′1 (x) = λnX1(x) for 0 ≤ x ≤ a

will be of the form

X1(x) = Dn exp
(π
b
nx
)

+D′n exp
(
−π
b
nx
)
.
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Imposing the boundary condition
X1(a) = 0

yields to

0 = Dn exp
(π
b
na
)(

1 +
D′n
Dn

exp

(
−2π

b
na

))
=⇒ D′n = − exp

(
2π

b
na

)
Dn

and hence
X1(x) = Dn

(
exp

(π
b
nx
)
− exp

(
−π
b
n(x− 2a)

))
.

We have thus obtained a family of solutions, parametrized by n ∈ N. By linearity,
the sum of any two of these solutions is again a solution to the Laplace problem: as a
consequence, the general form of the function u1 will be

u1(x, y) =
∞∑
n=1

An

(
exp

(π
b
nx
)
− exp

(
−π
b
n(x− 2a)

))
sin
(π
b
ny
)
.

The coefficients An = CnDn can now be computed by imposing the last boundary
condition, namely

Ay(b− y) = u1(0, y) =
∞∑
n=1

An

(
1− exp

(
2π

b
na

))
sin
(π
b
ny
)
.

In order to do this, we compute the Fourier coefficients of the function f(y) = Ay(b− y)
extended by oddity on the interval (−b, b); we want indeed to expand this function in a
series of 2b-periodic sines. One has

1

b

[∫ b

0

f(y) sin
(π
b
ny
)
dy +

∫ 0

−b
(−f(−y)) sin

(π
b
ny
)
dy

]
=

=
2

b

∫ b

0

Ay(b− y) sin
(π
b
ny
)
dy =

= −2A

πn

[
y(b− y) cos

(π
b
ny
) ∣∣∣∣y=b

y=0

−
∫ b

0

(b− 2y) cos
(π
b
ny
)
dy

]
=

=
2Ab

π2n2

[
(b− 2y) sin

(π
b
ny
) ∣∣∣∣y=b

y=0

+ 2

∫ b

0

sin
(π
b
ny
)
dy

]
=

= −4Ab2

π3n3
cos
(π
b
ny
) ∣∣∣∣y=b

y=0

= −4Ab2

π3n3
((−1)n − 1) =

=

0 if n is even,
8Ab2

π3n3
if n is odd.
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We conclude that

An =


0 if n is even,
8Ab2

π3n3

1

1− exp
(
2π
b
na
) if n is odd,

and thus

u1(x, y) =
∞∑
n=1

8Ab2

π3(2n− 1)3
exp

(
π
b
(2n− 1)x

)
− exp

(
−π

b
(2n− 1)(x− 2a)

)
1− exp

(
2π
b

(2n− 1)a
) ·

· sin
(π
b

(2n− 1)y
)
.

To find the function u2, we proceed in the same way. We impose the form

u2(x, y) = X2(x)Y2(y).

We find again

−X
′′
2 (x)

X2(x)
=
Y ′′2 (y)

Y2(y)
= µ

with constant µ. Imposing the boundary conditions, we obtain that X2 solves{
X ′′2 (x) = −µX2(x) for 0 ≤ x ≤ a,

X2(0) = 0 = X2(a),

hence we deduce

µ = µn =
(π
a
n
)2

and X2(x) = En sin
(π
a
nx
)
, n ∈ N.

Arguing as before, we obtain also the solution to the problem{
Y ′′2 (y) = µnY2(x) per 0 ≤ y ≤ b,

Y2(b) = 0

in the form
Y2(y) = Fn

(
exp

(π
a
ny
)
− exp

(
−π
a
n(y − 2b)

))
.

The general form of the function u2 will thus be

u2(x, y) =
∞∑
n=1

Bn sin
(π
a
nx
)(

exp
(π
a
ny
)
− exp

(
−π
a
n(y − 2b)

))
.

The coefficients Bn = EnFn can be now computed by imposing the last boundary
condition, namely

B sin
(π
a
x
)

= u2(x, 0) =
∞∑
n=1

Bn

(
1− exp

(
2π

a
nb

))
sin
(π
a
nx
)
.
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We immediately obtain

Bn =

0 if n 6= 1,
B

1− exp
(
2π
a
b
) if n = 1.

In conclusion

u2(x, y) = B sin
(π
a
x
) exp

(
π
a
y
)
− exp

(
−π
a
(y − 2b)

)
1− exp

(
2π
a
b
) .

The following figure illustrates the graph of the solution u(x, y) = u1(x, y) + u2(x, y)
for the following values of the parameters:

A = 1, B = 10, a = 5, b = 4.

For “computational” reasons, only the first 5 terms in the series defining u1 have been
computed.

♦
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