Ist. di Fisica Matematica mod. A Fourth exercise session

Massimiliano Ronzani (mronzani@sissa.it)

November 25th, 2015

Exercises are numbered as in the lecture notes of the course.
The following Exercises deal with the Fourier transform

$$
\begin{equation*}
\hat{f}(p)=\mathcal{F}_{x \rightarrow p}(f)(p)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i p x} f(x) d x . \tag{1}
\end{equation*}
$$

Recall that the inversion formula

$$
\begin{equation*}
f(x)=\mathcal{F}_{p \rightarrow x}(\hat{f})(x)=\int_{-\infty}^{+\infty} e^{i p x} \hat{f}(p) d p \tag{2}
\end{equation*}
$$

holds.
Exercise 5.7.2. Let $\hat{f}(p)$ be the Fourier transform of the function $f(x)$. Prove that $e^{i a p} \hat{f}(p)$ is the Fourier transform of the shifted function $f(x+a)$.

Solutione. Denote by $\left(T_{a} f\right)(x):=f(x+a)$. Clearly $T_{a} f$ is absolutely integrable every time f is, since the Lebesgue measure $d x$ is translation-invariant: hence the Fourier transform $\left(\widehat{T_{a} f}\right)(p)$ is well-defined. One then has

$$
\begin{aligned}
\left(\widehat{T_{a} f}\right)(p) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i p x}\left(T_{a} f\right)(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i p x} f(x+a) d x= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i p(y-a)} f(y) d y=\frac{e^{i p a}}{2 \pi} \int_{-\infty}^{+\infty} e^{-i p y} f(y) d y= \\
& =e^{i a p} \hat{f}(p)
\end{aligned}
$$

where the third equality is realized by the change of variables $y=x+a$ (hence $d y=d x$). \diamond

Exercise 5.7.3. Find the Fourier transforms of the following functions.

$$
\begin{gather*}
f(x)=\Pi_{A}(x)= \begin{cases}\frac{1}{2 A} & \text { if }|x|<A, \\
0 & \text { otherwise }\end{cases} \tag{5.7.2}\\
f(x)=\Pi_{A}(x) \cos (\omega x) \tag{5.7.3}
\end{gather*}
$$

Solutione. As for (5.7.2), we compute

$$
\begin{aligned}
\hat{\Pi}_{A}(p) & =\frac{1}{2 \pi} \int_{-A}^{A} e^{-i p x} \frac{1}{2 A} d x=\frac{1}{4 \pi A}\left[\frac{e^{-i p x}}{-i p}\right]_{x=-A}^{x=A}= \\
& =\frac{1}{2 \pi} \frac{1}{A p} \frac{e^{i A p}-e^{-i A p}}{2 i}=\frac{1}{2 \pi} \frac{\sin (A p)}{A p} .
\end{aligned}
$$

As for (5.7.3), first notice that, arguing as in the previous Exercise, it is easy to show that the Fourier transform of a function of the form $e^{ \pm i \omega x} g(x)$ is given by the translated function $\hat{g}(p \mp \omega)$. Since

$$
f(x)=\Pi_{A}(x) \cos (\omega x)=\frac{1}{2}\left(e^{i \omega x} \Pi_{A}(x)+e^{-i \omega x} \Pi_{A}(x)\right),
$$

by the linearity of the Fourier transform we have that

$$
\hat{f}(p)=\frac{1}{2}\left(\hat{\Pi}_{A}(p-\omega)+\hat{\Pi}_{A}(p+\omega)\right)=\frac{1}{4 \pi}\left(\frac{\sin (A(p-\omega))}{A(p-\omega)}+\frac{\sin (A(p+\omega))}{A(p+\omega)}\right) .
$$

Exercise 5.7.4. Find the function $f(x)$ if its Fourier transform is given by

$$
\begin{equation*}
\hat{f}(p)=e^{-k|p|}, \quad k>0 . \tag{5.7.7}
\end{equation*}
$$

Solutione. We use the inversion formula (2). We compute

$$
\begin{aligned}
f(x) & =\int_{-\infty}^{+\infty} e^{i p x} e^{-k|p|} d p= \\
& =\int_{-\infty}^{0} e^{i p x} e^{k p} d p+\int_{0}^{+\infty} e^{i p x} e^{-k p} d p= \\
& =2 \int_{0}^{\infty} \cos (p x) e^{-k p} d p=\frac{2}{k} \int_{0}^{\infty} \cos \left(q \frac{x}{k}\right) e^{-q} d q
\end{aligned}
$$

upon substituting $q=k p$. Integrating by parts twice, we get

$$
\begin{aligned}
\int_{0}^{\infty} \cos \left(q \frac{x}{k}\right) e^{-q} d q & =\left[-e^{-q} \cos \left(q \frac{x}{k}\right)\right]_{q=0}^{q=\infty}-\frac{x}{k} \int_{0}^{\infty} \sin \left(q \frac{x}{k}\right) e^{-q} d q= \\
& =1-\frac{x}{k}\left(\left[-e^{-q} \sin \left(q \frac{x}{k}\right)\right]_{q=0}^{q=\infty}+\frac{x}{k} \int_{0}^{\infty} \cos \left(q \frac{x}{k}\right) e^{-q} d q\right)= \\
& =1-\frac{x^{2}}{k^{2}} \int_{0}^{\infty} \cos \left(q \frac{x}{k}\right) e^{-q} d q
\end{aligned}
$$

from which we deduce that

$$
\int_{0}^{\infty} \cos \left(q \frac{x}{k}\right) e^{-q} d q=\frac{1}{1+\frac{x^{2}}{k^{2}}}=\frac{k^{2}}{x^{2}+k^{2}} .
$$

In conclusion

$$
\begin{equation*}
f(x)=\frac{2}{k} \frac{k^{2}}{x^{2}+k^{2}}=\frac{2 k}{x^{2}+k^{2}} . \tag{3}
\end{equation*}
$$

Exercise 5.7.5. Let $u=u(x, y)$ be a solution to the Laplace equation on the half-plane $y \geq 0$ satisfying the conditions

$$
\begin{align*}
& \Delta u(x, y)=0, \quad y>0 \\
& u(x, 0)=\phi(x) \tag{5.7.8}\\
& u(x, y) \rightarrow 0 \quad \text { as } \quad y \rightarrow+\infty \quad \text { for every } \quad x \in \mathbb{R} .
\end{align*}
$$

1) Prove that the Fourier transform of u in the variable x

$$
\hat{u}(p, y)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} u(x, y) e^{-i p x} d x
$$

has the form

$$
\hat{u}(p, y)=\hat{\phi}(p) e^{-y|p|} .
$$

Here $\hat{\phi}(p)$ is the Fourier transform of the boundary function $\phi(x)$.
2) Derive the following formula for the solution to the b.v.p. (5.7.8):

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{y}{(x-s)^{2}+y^{2}} \phi(s) d s
$$

Solutione. 1) Recall that (compare (5.3.12) in the lecture notes)

$$
\begin{equation*}
\mathcal{F}_{x \rightarrow p}\left(f^{\prime}\right)(p)=i p \mathcal{F}_{x \rightarrow p}(f)(p) . \tag{4}
\end{equation*}
$$

If $u(x, y)$ is a solution to (5.7.8), using (4) one deduces that its Fourier tranform $\hat{u}(p, y)$ satisfies the following problem:

$$
\begin{aligned}
& (i p)^{2} \hat{u}(x, y)+\frac{\partial^{2} \hat{u}}{\partial y^{2}}(p, y)=0, \quad y>0 \\
& \hat{u}(p, 0)=\hat{\phi}(p) \\
& \hat{u}(p, y) \rightarrow 0 \quad \text { as } \quad y \rightarrow+\infty \quad \text { for every } \quad p \in \mathbb{R}
\end{aligned}
$$

As $p^{2} \geq 0$, the differential equation

$$
\frac{\partial^{2} \hat{u}}{\partial y^{2}}(p, y)=p^{2} \hat{u}(x, y)
$$

admits as a general solution

$$
\hat{u}(p, y)=c_{1}(p) e^{-y|p|}+c_{2}(p) e^{y|p|} .
$$

Imposing that $\hat{u}(p, y) \rightarrow 0$ as $y \rightarrow+\infty$ yields that $c_{2}(p) \equiv 0$. Evaluating then at $y=0$ one obtains $c_{1}(p)=\hat{\phi}(p)$. Consequently

$$
\hat{u}(p, y)=\hat{\phi}(p) e^{-y|p|} .
$$

2) Applying the inversion formula (2), we obtain

$$
\begin{aligned}
u(x, y) & =\int_{-\infty}^{+\infty} e^{i p x} \hat{u}(p, y) d p=\int_{-\infty}^{+\infty} e^{i p x} \hat{\phi}(p) e^{-y|p|} d p= \\
& =\int_{-\infty}^{+\infty} e^{i p x}\left(\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i p s} \phi(s) d s\right) e^{-y|p|} d p= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} e^{-i p(x-s)} e^{-y|p|} d p\right) \phi(s) d s= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \mathcal{F}_{p \rightarrow x}\left(e^{-y|p|}\right)(x-s) \phi(s) d s .
\end{aligned}
$$

[Exercise: justify the exchange of integration in $d s$ and $d p$ above.] Using the result (3) from the previous Exercise for $k=y$, we conclude that

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{y}{(x-s)^{2}+y^{2}} \phi(s) d s
$$

as wanted.

