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Exercises are numbered as in the lecture notes of the course.

The following Exercises deal with the Fourier transform

f̂(p) = Fx→p(f)(p) =
1

2π

∫ +∞

−∞
e−ipxf(x) dx. (1)

Recall that the inversion formula

f(x) = Fp→x(f̂)(x) =

∫ +∞

−∞
eipxf̂(p) dp (2)

holds.

Exercise 5.7.2. Let f̂(p) be the Fourier transform of the function f(x). Prove that
eiapf̂(p) is the Fourier transform of the shifted function f(x+ a).

Solutione. Denote by (Taf)(x) := f(x + a). Clearly Taf is absolutely integrable every
time f is, since the Lebesgue measure dx is translation-invariant: hence the Fourier
transform (T̂af)(p) is well-defined. One then has

(T̂af)(p) =
1

2π

∫ +∞

−∞
e−ipx(Taf)(x) dx =

1

2π

∫ +∞

−∞
e−ipxf(x+ a) dx =

=
1

2π

∫ +∞

−∞
e−ip(y−a)f(y) dy =

eipa

2π

∫ +∞

−∞
e−ipyf(y) dy =

= eiapf̂(p)

where the third equality is realized by the change of variables y = x+a (hence dy = dx).
♦

Exercise 5.7.3. Find the Fourier transforms of the following functions.
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f(x) = ΠA(x) =


1

2A
if |x| < A,

0 otherwise
(5.7.2)

f(x) = ΠA(x) cos(ωx) (5.7.3)

Solutione. As for (5.7.2), we compute

Π̂A(p) =
1

2π

∫ A

−A
e−ipx

1

2A
dx =

1

4πA

[
e−ipx

−ip

]x=A

x=−A
=

=
1

2π

1

Ap

eiAp − e−iAp

2i
=

1

2π

sin(Ap)

Ap
.

As for (5.7.3), first notice that, arguing as in the previous Exercise, it is easy to show
that the Fourier transform of a function of the form e±iωxg(x) is given by the translated
function ĝ(p∓ ω). Since

f(x) = ΠA(x) cos(ωx) =
1

2

(
eiωxΠA(x) + e−iωxΠA(x)

)
,

by the linearity of the Fourier transform we have that

f̂(p) =
1

2

(
Π̂A(p− ω) + Π̂A(p+ ω)

)
=

1

4π

(
sin(A(p− ω))

A(p− ω)
+

sin(A(p+ ω))

A(p+ ω)

)
.

♦

Exercise 5.7.4. Find the function f(x) if its Fourier transform is given by

f̂(p) = e−k|p|, k > 0. (5.7.7)

Solutione. We use the inversion formula (2). We compute

f(x) =

∫ +∞

−∞
eipx e−k|p| dp =

=

∫ 0

−∞
eipx ekp dp+

∫ +∞

0

eipx e−kp dp =

= 2

∫ ∞
0

cos(px) e−kp dp =
2

k

∫ ∞
0

cos
(
q
x

k

)
e−q dq

upon substituting q = kp. Integrating by parts twice, we get∫ ∞
0

cos
(
q
x

k

)
e−q dq =

[
−e−q cos

(
q
x

k

)]q=∞
q=0
− x

k

∫ ∞
0

sin
(
q
x

k

)
e−q dq =

= 1− x

k

([
−e−q sin

(
q
x

k

)]q=∞
q=0

+
x

k

∫ ∞
0

cos
(
q
x

k

)
e−q dq

)
=

= 1− x2

k2

∫ ∞
0

cos
(
q
x

k

)
e−q dq
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from which we deduce that∫ ∞
0

cos
(
q
x

k

)
e−q dq =

1

1 + x2

k2

=
k2

x2 + k2
.

In conclusion

f(x) =
2

k

k2

x2 + k2
=

2k

x2 + k2
. (3)

♦

Exercise 5.7.5. Let u = u(x, y) be a solution to the Laplace equation on the half-plane
y ≥ 0 satisfying the conditions

∆u(x, y) = 0, y > 0

u(x, 0) = φ(x)

u(x, y)→ 0 as y → +∞ for every x ∈ R.
(5.7.8)

1) Prove that the Fourier transform of u in the variable x

û(p, y) =
1

2π

∫ +∞

−∞
u(x, y)e−ipx dx

has the form
û(p, y) = φ̂(p)e−y|p|.

Here φ̂(p) is the Fourier transform of the boundary function φ(x).
2) Derive the following formula for the solution to the b.v.p. (5.7.8):

u(x, y) =
1

π

∫ +∞

−∞

y

(x− s)2 + y2
φ(s) ds.

Solutione. 1) Recall that (compare (5.3.12) in the lecture notes)

Fx→p (f ′) (p) = ipFx→p(f)(p). (4)

If u(x, y) is a solution to (5.7.8), using (4) one deduces that its Fourier tranform û(p, y)
satisfies the following problem:

(ip)2û(x, y) +
∂2û

∂y2
(p, y) = 0, y > 0

û(p, 0) = φ̂(p)

û(p, y)→ 0 as y → +∞ for every p ∈ R.

As p2 ≥ 0, the differential equation

∂2û

∂y2
(p, y) = p2û(x, y)
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admits as a general solution

û(p, y) = c1(p) e
−y|p| + c2(p) e

y|p|.

Imposing that û(p, y)→ 0 as y → +∞ yields that c2(p) ≡ 0. Evaluating then at y = 0
one obtains c1(p) = φ̂(p). Consequently

û(p, y) = φ̂(p)e−y|p|.

2) Applying the inversion formula (2), we obtain

u(x, y) =

∫ +∞

−∞
eipx û(p, y) dp =

∫ +∞

−∞
eipx φ̂(p)e−y|p| dp =

=

∫ +∞

−∞
eipx

(
1

2π

∫ +∞

−∞
e−ipsφ(s) ds

)
e−y|p| dp =

=
1

2π

∫ +∞

−∞

(∫ +∞

−∞
e−ip(x−s)e−y|p| dp

)
φ(s) ds =

=
1

2π

∫ +∞

−∞
Fp→x

(
e−y|p|

)
(x− s)φ(s) ds.

[Exercise: justify the exchange of integration in ds and dp above.] Using the result (3)
from the previous Exercise for k = y, we conclude that

u(x, y) =
1

π

∫ +∞

−∞

y

(x− s)2 + y2
φ(s) ds

as wanted. ♦
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