Ist. di Fisica Matematica mod. A Fifth Exercise Session

Massimiliano Ronzani (mronzani@sissa.it)

December 3, 2015

Exercises are numbered as in the lecture notes for the course.
Esercizio 6.5.1. Derive the following formula for the solution of the Cauchy problem

$$
\delta v(x, 0)=\phi(x)
$$

for the linearized Burgers equation (6.2.4):

$$
\delta v(x, t)=\frac{1}{2 \sqrt{\pi \nu t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y-c t)^{2}}{\nu \nu t}} \phi(y) d y .
$$

Solution. We remind the reader that the linearized Burgers equation has the form

$$
\delta v_{t}+c \delta v_{x}=\nu \delta v_{x x} .
$$

We present two possible approaches to complete the assignment.

1. We denote by $\delta \hat{v}(k, t)$ the Fourier transform of $\delta v(x, t)$ with respect to the variable x; then Burgers equation can be rewritten, in momentum space as

$$
\delta \hat{v}_{t}=-\left(i c k+\nu k^{2}\right) \delta \hat{v} .
$$

One immediately gets

$$
\delta \hat{v}(k, t)=e^{-\left(i c k+\nu k^{2}\right) t} \delta \hat{v}(k, 0)=e^{-i k c t} e^{-\nu t k^{2}} \hat{\phi}(k) .
$$

Now we can apply the formula for the inverse Fourier transform

$$
\begin{aligned}
\delta v(x, t) & =\int_{-\infty}^{+\infty} e^{i k x} e^{-i k c t} e^{-\nu t k^{2}} \hat{\phi}(k) d k= \\
& =\int_{-\infty}^{+\infty} e^{i k(x-c t)} e^{-\nu t k^{2}}\left(\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i k y} \phi(y) d y\right) d k= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} e^{i k(x-y-c t)} e^{-\nu t k^{2}} d k\right) \phi(y) d y .
\end{aligned}
$$

The term in the parentesis is the Fourier tranform of the function $g(k)=e^{-\nu t k^{2}}$, evaluated in $x-y-c t$. Since

$$
\mathcal{F}_{x \rightarrow p}\left(e^{-x^{2} / 2}\right)(p)=\frac{e^{-p^{2} / 2}}{\sqrt{2 \pi}}, \quad \mathcal{F}_{x \rightarrow p}(f(a x))(p)=a^{-1} \mathcal{F}_{x \rightarrow p}(f)\left(a^{-1} p\right)
$$

one immediately gets
$\delta v(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(\frac{\sqrt{2 \pi}}{\sqrt{2 \nu t}} e^{-\frac{1}{2}\left(\frac{x-y-c t}{\sqrt{2 \nu t}}\right)^{2}}\right) \phi(y) d y=\frac{1}{2 \sqrt{\pi \nu t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y-c t)^{2}}{4 \nu t}} \phi(y) d y$
which proves the assignment.
2. We can perform a change of variables and reduce the linearized Burgers equation to a heat equation. We define

$$
\begin{equation*}
u(x, t):=\delta v(x+c t, t) \tag{1}
\end{equation*}
$$

Then the heat equation for u reads

$$
\begin{equation*}
0=u_{t}-\nu u_{x x}=\delta v_{t}+c \delta v_{x}-\nu \delta v_{x x} . \tag{2}
\end{equation*}
$$

The general solution to the heat equation with initial condition $\phi(x)$ is given by the Poisson formula:

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \sqrt{\pi \nu t}} \int_{-\infty}^{+\infty} e^{\frac{(x-y)^{2}}{4 \nu}} \phi(y) d y \tag{3}
\end{equation*}
$$

By performing the inverse change of variable we get to the required formula for the solution.

Esercizio 6.5.2. Obtain the following representation for solutions to the linearized $K d V$ equation (6.2.7) with the initial data $\delta v(x, 0)=\phi(x)$ rapidly decreasing at $|x| \rightarrow \infty$:

$$
\delta v(x, t)=\int_{-\infty}^{+\infty} A\left(x-y-c t, \epsilon^{2} t\right) \phi(y) d y
$$

where

$$
\begin{equation*}
A(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i\left(k x+k^{3} t\right)} d k . \tag{4}
\end{equation*}
$$

The integral (4) converges and can be expressed via the Airy function.
Solution. We remind the reader that the linearized KdV equation reads

$$
\delta v_{t}+c \delta v_{x}+\epsilon^{2} \delta v_{x x x}=0
$$

We denote by $\delta \hat{v}(k, t)$ the Fourier transform of $\delta v(x, t)$ w.r.t the variable x; then we can rewrite the linearized KdV equation as

$$
\delta \hat{v}_{t}=-i\left(c k-\epsilon^{2} k^{3}\right) \delta \hat{v}
$$

which immediately leads us to

$$
\delta \hat{v}(k, t)=e^{-i\left(c k-\epsilon^{2} k^{3}\right) t} \delta \hat{v}(k, 0)=e^{-i k c t} e^{i k^{3} \epsilon^{2} t} \hat{\phi}(k) .
$$

Now we can apply the formula for the inverse Fourier transform

$$
\begin{aligned}
\delta v(x, t) & =\int_{-\infty}^{+\infty} e^{i k x} e^{-i k c t} e^{i k^{3} \epsilon^{2} t} \hat{\phi}(k) d k= \\
& =\int_{-\infty}^{+\infty} e^{i k(x-c t)} e^{i k^{3} \epsilon^{2} t}\left(\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i k y} \phi(y) d y\right) d k= \\
& =\int_{-\infty}^{+\infty}\left(\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i\left[k(x-y-c t)+k^{3} \epsilon^{2} t\right]} d k\right) \phi(y) d y .
\end{aligned}
$$

This leads to the required formula (note that, in order to apply Fubini's theorem and exchange the order of integration, it is necessary that ϕ is rapidly decreasing).

Esercizio 6.5.3. Derive the following Stirling formula for the asymptotic of the Gamma function

$$
\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t=\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\mathcal{O}\left(\frac{1}{x}\right)\right), \quad x \rightarrow+\infty .
$$

Hint: after the substitution $t=x$ s the integral rewrites as follows:

$$
\Gamma(x+1)=x^{x+1} \int_{0}^{\infty} e^{-x(s-\log s)} d s
$$

Solution. We define $S(s):=s-\log s$ for $s>0$. Then one has

$$
S^{\prime}(s)=1-\frac{1}{s}=0 \quad \Longleftrightarrow \quad s=1, \quad S^{\prime \prime}(s)=\frac{1}{s^{2}}>0
$$

which tells us that $S(s)$ attains an absolute minimum in $s=1$. We can apply Laplace's formula (Theorem 6.3.5), which yields that, for $\epsilon \rightarrow 0$

$$
\int_{0}^{\infty} e^{-\frac{S(s)}{\epsilon}} d s=\sqrt{\frac{2 \pi \epsilon}{S^{\prime \prime}(1)}} \cdot 1 \cdot e^{-\frac{S(1)}{\epsilon}}(1+\mathcal{O}(\epsilon))=\sqrt{2 \pi \epsilon} e^{-\epsilon^{-1}}(1+\mathcal{O}(\epsilon))
$$

We can now set $\epsilon=1 / x$ and for $x \rightarrow+\infty$ we have

$$
\begin{aligned}
\Gamma(x+1) & =x^{x+1} \int_{0}^{\infty} e^{-x(s-\log s)} d s=x^{x+1} \sqrt{2 \pi \frac{1}{x}} e^{-x}\left(1+\mathcal{O}\left(\frac{1}{x}\right)\right)= \\
& =\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\mathcal{O}\left(\frac{1}{x}\right)\right)
\end{aligned}
$$

Esercizio 3.8.5. Prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}=\frac{\pi-x}{2} \quad \text { per } \quad 0<x<2 \pi \tag{5}
\end{equation*}
$$

Compute the sums of the following Fourier series for every other values of $x \in \mathbb{R}$.
Solution. We will compute the coefficients a_{n}, b_{n} of the Fourier series of the function $f(x)=(\pi-x) / 2$. Using the change of variable $x \rightsquigarrow y=x-\pi$ we get

$$
a_{0}=-\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{y}{2} d y=0
$$

since it is an odd function. Moreover, using the trigonometric identity

$$
\begin{equation*}
\cos (n y+n \pi)=\cos (n y) \underbrace{\cos (n \pi)}_{=(-1)^{n}}-\sin (n y) \underbrace{\sin (n \pi)}_{=0}=(-1)^{n} \cos (n y) \tag{6}
\end{equation*}
$$

we obtain for the same reason

$$
a_{n}=-\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{y}{2} \cos (n(y+\pi)) d y=-\frac{(-1)^{n}}{\pi} \int_{-\pi}^{\pi} \frac{y}{2} \cos (n y) d y=0
$$

Now we compute the coefficients b_{n} : integrating by part we get

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} \frac{\pi-x}{2} \sin (n x) d x=\frac{1}{\pi}(\left[\frac{x-\pi}{2} \frac{\cos (n x)}{n}\right]_{x=0}^{x=2 \pi}-\frac{1}{2 n} \underbrace{\int_{0}^{2 \pi} \cos (n x) d x}_{=\delta_{n, 0}=0})= \\
& =\frac{1}{\pi}\left(\frac{\pi}{2} \frac{1}{n}-\frac{-\pi}{2} \frac{1}{n}\right)=\frac{1}{n} .
\end{aligned}
$$

Therefore we proved (5).
The convergence (uniform and absolute) of the series for $x \in(0,2 \pi)$ is guarantee by the fact that in this interval f is of class \mathcal{C}^{1}. For the other values of $x \in \mathbb{R}$, we have that

$$
\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}= \begin{cases}f\left(x^{\prime}\right) & \text { se } x=x^{\prime}+2 k \pi, k \in \mathbb{Z}, x^{\prime} \in(0,2 \pi) \\ 0 & \text { se } x=2 k \pi, k \in \mathbb{Z}\end{cases}
$$

that is extending f by periodicity with period 2π (and putting it equal to zero in the multiples of 2π where the sine is zero).

