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Exercises are numbered as in the lecture notes for the course.

Esercizio 6.5.1. Derive the following formula for the solution of the Cauchy problem

δv(x, 0) = φ(x)

for the linearized Burgers equation (6.2.4):

δv(x, t) =
1

2
√
πνt

∫ +∞

−∞
e−

(x−y−ct)2
4νt φ(y) dy.

Solution. We remind the reader that the linearized Burgers equation has the form

δvt + cδvx = νδvxx.

We present two possible approaches to complete the assignment.

1. We denote by δv̂(k, t) the Fourier transform of δv(x, t) with respect to the variable
x; then Burgers equation can be rewritten, in momentum space as

δv̂t = −(ick + νk2)δv̂.

One immediately gets

δv̂(k, t) = e−(ick+νk2)tδv̂(k, 0) = e−ikcte−νtk
2

φ̂(k).

Now we can apply the formula for the inverse Fourier transform

δv(x, t) =

∫ +∞

−∞
eikx e−ikcte−νtk

2

φ̂(k) dk =

=

∫ +∞

−∞
eik(x−ct)e−νtk

2

(
1

2π

∫ +∞

−∞
e−ikyφ(y) dy

)
dk =

=
1

2π

∫ +∞

−∞

(∫ +∞

−∞
eik(x−y−ct)e−νtk

2

dk

)
φ(y) dy.
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The term in the parentesis is the Fourier tranform of the function g(k) = e−νtk
2
,

evaluated in x− y − ct. Since

Fx→p
(
e−x

2/2
)

(p) =
e−p

2/2

√
2π

, Fx→p (f(a x)) (p) = a−1Fx→p(f)(a−1p),

one immediately gets

δv(x, t) =
1

2π

∫ +∞

−∞

( √
2π√
2νt

e
− 1

2

“
x−y−ct√

2νt

”2
)
φ(y) dy =

1

2
√
πνt

∫ +∞

−∞
e−

(x−y−ct)2
4νt φ(y) dy

which proves the assignment.

2. We can perform a change of variables and reduce the linearized Burgers equation
to a heat equation. We define

u(x, t) := δv(x+ ct, t) (1)

Then the heat equation for u reads

0 = ut − νuxx = δvt + cδvx − νδvxx. (2)

The general solution to the heat equation with initial condition φ(x) is given by
the Poisson formula:

u(x, t) =
1

2
√
πνt

∫ +∞

−∞
e

(x−y)2
4ν φ(y)dy. (3)

By performing the inverse change of variable we get to the required formula for
the solution.

♦

Esercizio 6.5.2. Obtain the following representation for solutions to the linearized KdV
equation (6.2.7) with the initial data δv(x, 0) = φ(x) rapidly decreasing at |x| → ∞:

δv(x, t) =

∫ +∞

−∞
A(x− y − ct, ε2t)φ(y) dy

where

A(x, t) =
1

2π

∫ +∞

−∞
ei(kx+k

3t) dk. (4)

The integral (4) converges and can be expressed via the Airy function.

Solution. We remind the reader that the linearized KdV equation reads

δvt + cδvx + ε2δvxxx = 0.
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We denote by δv̂(k, t) the Fourier transform of δv(x, t) w.r.t the variable x; then we can
rewrite the linearized KdV equation as

δv̂t = −i(ck − ε2k3)δv̂

which immediately leads us to

δv̂(k, t) = e−i(ck−ε
2k3)tδv̂(k, 0) = e−ikcteik

3ε2tφ̂(k).

Now we can apply the formula for the inverse Fourier transform

δv(x, t) =

∫ +∞

−∞
eikx e−ikcteik

3ε2tφ̂(k) dk =

=

∫ +∞

−∞
eik(x−ct)eik

3ε2t

(
1

2π

∫ +∞

−∞
e−ikyφ(y) dy

)
dk =

=

∫ +∞

−∞

(
1

2π

∫ +∞

−∞
ei[k(x−y−ct)+k

3ε2t] dk

)
φ(y) dy.

This leads to the required formula (note that, in order to apply Fubini’s theorem and
exchange the order of integration, it is necessary that φ is rapidly decreasing). ♦

Esercizio 6.5.3. Derive the following Stirling formula for the asymptotic of the
Gamma function

Γ(x+ 1) =

∫ ∞
0

txe−t dt =
√

2πx
(x
e

)x(
1 +O

(
1

x

))
, x→ +∞.

Hint: after the substitution t = x s the integral rewrites as follows:

Γ(x+ 1) = xx+1

∫ ∞
0

e−x(s−log s) ds.

Solution. We define S(s) := s− log s for s > 0. Then one has

S ′(s) = 1− 1

s
= 0 ⇐⇒ s = 1, S ′′(s) =

1

s2
> 0,

which tells us that S(s) attains an absolute minimum in s = 1. We can apply Laplace’s
formula (Theorem 6.3.5 ), which yields that, for ε→ 0∫ ∞

0

e−
S(s)
ε ds =

√
2πε

S ′′(1)
· 1 · e−

S(1)
ε (1 +O(ε)) =

√
2πε e−ε

−1

(1 +O(ε)) .

We can now set ε = 1/x and for x→ +∞ we have

Γ(x+ 1) = xx+1

∫ ∞
0

e−x(s−log s) ds = xx+1

√
2π

1

x
e−x

(
1 +O

(
1

x

))
=

=
√

2πx
(x
e

)x(
1 +O

(
1

x

))
.
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♦

Esercizio 3.8.5. Prove that

∞∑
n=1

sin(nx)

n
=
π − x

2
per 0 < x < 2π. (5)

Compute the sums of the following Fourier series for every other values of x ∈ R.

Solution. We will compute the coefficients an, bn of the Fourier series of the function
f(x) = (π − x)/2. Using the change of variable x y = x− π we get

a0 = − 1

π

∫ π

−π

y

2
dy = 0

since it is an odd function. Moreover, using the trigonometric identity

cos(ny + nπ) = cos(ny) cos(nπ)︸ ︷︷ ︸
=(−1)n

− sin(ny) sin(nπ)︸ ︷︷ ︸
=0

= (−1)n cos(ny) (6)

we obtain for the same reason

an = − 1

π

∫ π

−π

y

2
cos(n(y + π)) dy = −(−1)n

π

∫ π

−π

y

2
cos(ny) dy = 0.

Now we compute the coefficients bn: integrating by part we get

bn =
1

π

∫ 2π

0

π − x
2

sin(nx) dx =
1

π


[
x− π

2

cos(nx)

n

]x=2π

x=0

− 1

2n

∫ 2π

0

cos(nx) dx︸ ︷︷ ︸
=δn,0=0

 =

=
1

π

(
π

2

1

n
− −π

2

1

n

)
=

1

n
.

Therefore we proved (5).
The convergence (uniform and absolute) of the series for x ∈ (0, 2π) is guarantee by

the fact that in this interval f is of class C1. For the other values of x ∈ R, we have that

∞∑
n=1

sin(nx)

n
=

{
f(x′) se x = x′ + 2kπ, k ∈ Z, x′ ∈ (0, 2π),

0 se x = 2kπ, k ∈ Z,

that is extending f by periodicity with period 2π (and putting it equal to zero in the
multiples of 2π where the sine is zero). ♦
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