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1 Cauchy problem for systems of PDEs. Cauchy - Kovalevskaya
theorem

1.1 Formulation of Cauchy problem

Consider a system of n PDEs for the functions u1(x, t), . . . , un(x, t) of the form

∂ui
∂t

= fi

(
t, x,u,ux,uxx, . . . ,u(m)

)
, i = 1, . . . , n. (1.1.1)

We say that the vector-valued function u(x, t) = (u1(x, t), . . . , un(x, t)) defined for x ∈
(x0, x1), t ∈ (t0, t1) satisfies the system (1.1.1) if, after the substitution

∂ui
∂t

=
∂ui(x, t)

∂t

u = (u1(x, t), . . . , un(x, t)) , ux =
(
∂u1(x, t)
∂x

, . . . ,
∂un(x, t)

∂x

)
, . . .

into (1.1.1) it becomes an identity valid for every i = 1, . . . , n and all x ∈ (x0, x1), t ∈ (t0, t1).

Without loss of generality we can assume that

t0 < 0 < t1.

The Cauchy problem is formulated as follows. Given n functions φ1(x), . . . , φn(x) find a
solution u1(x, t), . . . , un(x, t) defined for 0 ≤ t ≤ t1 such that

u1(x, 0) = φ1(x), . . . , un(x, 0) = φn(x). (1.1.2)

In the next section we will prove that the Cauchy problem (1.1.1), (1.1.2) has a unique
solution provided the right hand sides of the equations and the initial data are analytic
functions. The idea of the proof is very simple: using the system (1.1.1) we can compute the
time derivatives of any order of the solution at the point t = 0. For example for the first
derivative we have

φ̇i(x) :=
∂ui
∂t
|t=0 = fi

(
0, x, φ(x), φx(x), . . . , φ(m)(x)

)
,

φ̈i(x) :=
∂2ui
∂t2
|t=0 =

∂fi
∂t

+
m∑
k=0

n∑
j=1

∂fi

∂u
(k)
j

∂kxfj

etc. Here all the functions fi, fj and their derivatives have to be evaluated at the point
(0, x, φ(x), φx(x), . . . , φ(m)(x)). The operator ∂x is defined as follows

∂xf
(
t, x,u,ux, . . . ,u(m)

)
=

∂

∂x
f
(
t, x,u,ux, . . . ,u(m)

)
+

m∑
k=0

n∑
j=1

u
(k+1)
j

∂

∂u
(k)
j

f
(
t, x,u,ux, . . . ,u(m)

)
.

(1.1.3)
On a similar way one can compute all the derivatives ∂kui/∂tk at t = 0. We obtain then the
solution in the form of Taylor series

ui(x, t) = φi(x) + φ̇i(x)
t

1!
+ φ̈i(x)

t2

2!
+ . . . (1.1.4)

In the next section we will prove convergence of this series.
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1.2 Cauchy - Kovalevskaya theorem

Theorem 1.2.1 Let the functions in the right hand sides of the system (1.1.1) be analytic
in some neighborhood of the point

t = 0, x = 0, u = 0, ux = 0, . . . ,u(m) = 0. (1.2.1)

Moreover assume that the initial data (1.1.2) is analytic at x = 0. Then the Cauchy problem
(1.1.1), (1.1.2) has a unique solution analytic in some neighborhood of the point x = t = 0.

Proof: At the first step we will reduce the Cauchy problem (1.1.1), (1.1.2) to another problem
for a system of first order quasilinear equations. For simplicity let us consider the case n = 1,
m = 1:

ut = f(t, x, u, ux), u(x, 0) = φ(x). (1.2.2)

Introduce new functions
p = ut, q = ux.

One obtains a first order quasilinear (i.e., linear in derivatives) system of three equations

ut = p (1.2.3)
qt = px

pt = ft(t, x, u, q) + fu(t, x, u, q)p+ fq(t, x, u, q)px

along with the initial data

u(x, 0) = φ(x), q(x, 0) = φ′(x), p(x, 0) = f(0, x, φ(x), φ′(x)). (1.2.4)

Conversely, let us show that the Cauchy problem (1.2.3), (1.2.4) gives a solution to the
original Cauchy problem (1.2.2). First, using the first and the last equations one obtains

utt = pt =
∂

∂t
f(t, x, u, q).

Integrating in t we obtain
ut = f(t, x, u, q) + g(x)

where g(x) is the integration constant. At t = 0 we have

ut(x, 0) = p(x, 0) = f(0, x, φ(x), φ′(x)).

Hence g(x) ≡ 0, that is
ut = f(t, x, u, q).

Next, differentiating the first equation in (1.2.3) in x and using the second equation gives

uxt = qt.

Integrating in t we arrive at
ux = q + h(x)

with a new integration constant h(x). The initial data (1.2.4) imply

ux(x, 0) = φ′(x) = q(x, 0).
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So h(x) ≡ 0 and thus ux = q.

We have reduced the original problem to a Cauchy problem for a system of first order
quasilinear equations

ut = A(t, x,u)ux + b(t, x,u) (1.2.5)

with a Cauchy data
u(x, 0) = φ(x). (1.2.6)

Here A(t, x,u) and b(t, x,u) are some matrix-valued and vector-valued functions respectively.
At the next step we eliminated the explicit dependence on x and t by means of the following
trick. Introduce two new unknown functions τ , σ and consider the new Cauchy problem

ut = A(τ, σ,u)ux + b(τ, σ,u)σx
τt = σx

σt = 0
(1.2.7)

u(x, 0) = φ(x), τ(x, 0) = 0, σ(x, 0) = x.

It can easily be derived that the functions τ(x, t), σ(x, t) satisfying (1.2.7) must be of the
form

τ(x, t) = t, σ(x, t) = x.

So σx ≡ 1 and the problem (1.2.7) is equivalent to (1.2.5), (1.2.6).

We have arrived at a system of first order quasilinear PDEs with coefficients with no
explicit dependence on the space-time variables x and t. Moreover, the right hand sides of
the system are linear homogeneous functions of the derivatives. For these reasons it suffices
to prove the Theorem for the Cauchy problem of the form

ut = A(u)ux
(1.2.8)

u(x, 0) = φ(x)

with

u = (u1(x, t), . . . , un(x, t)) , A(u) = (Aij(u))1≤i,j≤n , φ(x) = (φ1(x), . . . , φn(x)) .

We will now apply the procedure of solving the system (1.2.8) in the form of power series
explained in the previous section and prove convergence of this procedure.

Without loss of generality we may assume that

φ(0) = 0.

Indeed, if this was not the case then one can shift the dependent function

u 7→ u− φ(0).
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The analyticity assumption implies that the functions φi(x) and Aij(u) can be represented
as sums of power series

φi(x) =
∞∑
p=1

φi,px
p

(1.2.9)

Aij(u) =
∞∑

p1,...,pn=0

Aij,pu
p1
1 . . . upnn

convergent for
|x| < ρ, |ui| < r, i = 1, . . . , n. (1.2.10)

We want to prove that the Cauchy problem (1.2.8) admits a solution in the form of a power
series

ui(x, t) =
∑
p,q≥0

ui,pqx
ptq, ui,0,0 = 0 (1.2.11)

convergent for
|x| < δ, |t| < τ (1.2.12)

for some positive δ, τ . From the previous arguments it is clear that such a solution is unique.

Observe that the coefficients ui,pq can be expressed as polynomials in the Taylor coeffi-
cients of the functions φj(x) and Akl(x), j, k, l = 1, . . . , n,

ui,pq = Pi,pq (φj,r, Akl,s) (1.2.13)

with universal coefficients. Universality means that these coefficients do not depend on the
particular choice of the system. For example,

ui,p 0 = φi,p.

In order to compute the coefficients ui,p 1 of the Taylor expansion of the function

∂ui(x, 0)
∂t

one has to use the equations (1.2.8) along with the initial data:

∑
p≥0

ui,p 1x
p =

n∑
j=1

∑
s1,...,sn

Aij,sφ
s1
1 (x) . . . φsnn (x)φ′j(x). (1.2.14)

Expanding the right hand sides in Taylor series one obtains expressions for ui,p 1. For example,

ui,0 1 =
n∑
j=1

Aij,0φj,1

etc. Observe that the assumption φ(0) = 0 is crucial to arrive at polynomial expressions. It
is clear that the coefficients of these polynomials are nonnegative integers.
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We will consider also another Cauchy problem

vt = B(v)vx
(1.2.15)

v(x, 0) = ψ(x)

of the same size with analytic initial data and analytic coefficients

ψi(x) =
∞∑
p=1

ψi,px
p

(1.2.16)

Bij(v) =
∞∑

p1,...,pn=0

Bij,pv
p1
1 . . . vpnn

that gives a majorant for the Cauchy problem (1.2.8), that is, all coefficients of the series
(1.2.16) are nonnegative real numbers satisfying inequalities

ψi,p ≥ |φi,p|, Bij,p ≥ |Aij,p|. (1.2.17)

Let
vi(x, t) =

∑
p≥1, q≥0

vi,pqx
ptq (1.2.18)

be the solution to the Cauchy problem (1.2.15) in the class of formal power series. Like above
one has

vi,pq = Pi,pq (ψj,r, Bjk,s) (1.2.19)

with the same polynomials Pi,pq with nonnegative integer coefficients. Hence the inequalities
(1.2.17) imply

vi,pq ≥ |ui,pq|. (1.2.20)

Our goal is to find a majorant for the Cauchy problem (1.2.8) in such a way that the formal
solution (1.2.18) to (1.2.15) converges for sufficiently small |x| and |t|. Then the inequalities
(1.2.20) will imply convergence of the series (1.2.11) for the same values of x and t.

In order to construct such a majorant let us recall the Cauchy inequalities for the coeffi-
cients of convergent power series:

|φi,p| ≤
M

ρp

(1.2.21)

|Aij,p| ≤
M

rp1+···+pn

for some positive constant M . The radii ρ and r are defined in (1.2.10). We choose

ψi,p =
M

ρp

(1.2.22)

Bij,p =
(p1 + · · ·+ pn)!

p1! . . . pn!
M

rp1+···+pn .
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Observe obvious inequality

Bij,p ≥
M

rp1+···+pn ,

so
Bij,p ≥ |Aij,p|.

We obtain the initial data for the majorant Cauchy problem

ψi(x) = M

∞∑
p=1

(
x

ρ

)p
=

M x

ρ− x
, |x| < ρ (1.2.23)

and the coefficient matrix

Bij(v) = M
∑

p1,...,pn≥0

(p1 + · · ·+ pn)!
p1! . . . pn!

(v1

r

)p1
. . .
(vn
r

)pn
(1.2.24)

=
M

1− v1+···+vn
r

, |v1|+ . . . |vn| < r.

We arrive at the following majorant Cauchy problem

∂vi
∂t

=
M

1− v1+···+vn
r

n∑
j=1

∂vj
∂x

, i = 1, . . . , n

(1.2.25)

vi(x, 0) =
M x

ρ− x
.

Let us look for a solution to the problem (1.2.25) in the form

vi(x, t) = v(x, t), i = 1, . . . , n.

The function v = v(x, t) must satisfy the following scalar Cauchy problem

vt =
M n

1− n
r v
vx

(1.2.26)

v(x, 0) =
M x

ρ− x
.

Lemma 1.2.2 The solution of the Cauchy problem (1.2.26) is determined from the quadratic
equation

(v +M)
[(

1− n

r
v
)
x+M nt

]
= ρ v

(
1− n

r
v
)

(1.2.27)

where one has to choose the root of the quadratic equation vanishing at x = 0, t = 0.
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Proof: Let us apply the implicit function theorem to the equation (1.2.27). Differentiating
the quadratic equation in x and t one finds

vx =
(M + v)

(
1− n

r v
)

ρ
(
1− 2n

r v
)
−Mnt−

(
1− Mn

r −
2nv
r

)
x

vt =
M n (M + v)

ρ
(
1− 2n

r v
)
−Mnt−

(
1− Mn

r −
2nv
r

)
x
.

Applicability of the implicit function theorem is guaranteed by non-vanishing of the denom-
inator at the point x = t = 0:

ρ

(
1− 2n

r
v

)
= ρ 6= 0

(we have used the condition v(0, 0) = 0). Substituting the above formula into the PDE we
obtain

vt =
M n

1− n
r v
vx.

At t = 0 the quadratic equation simplifies to

(v +M)
(

1− n

r
v
)
x = ρ v

(
1− n

r
v
)

that gives the needed solution

v =
M x

ρ− x
.

It remains to observe that at x = t = 0 the quadratic equation (1.2.27) reduces to

v
(

1− n

r
v
)

= 0.

The latter has two distinct roots

v1 = 0 and v2 =
r

n
.

Hence the roots of the quadratic equation remain distinct for sufficiently small |x| and |t|.
The lemma is proved.

The root we are looking for can be written explicitely

v =
1
2

M
ρ (x− r t) + r

n

(
1− x

ρ

)
1− x

ρ

− 1
2

√[
M
ρ (x+ r t)− r

n

(
1− x

ρ

)]2
− 4M2 r t

ρ

1− x
ρ

(1.2.28)

This function is analytic for

|x| < ρ and
[
M

ρ
(x+ r t)− r

n

(
1− x

ρ

)]2

− 4M2 r t

ρ
> 0.

These inequalities hold true for sufficiently small |x| and |t|. Hence the above arguments based
on the technique of majorants prove convergence of the series for the solution of (1.2.8).
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Remark 1.2.3 The theorem can be extended to the systems with complex coefficients replac-
ing the real variable x to a complex one z. The assumption of analyticity remains crucial in
the proof. Recall that a complex analytic function f = f(z) can be considered as a function
of two real variables x, y, where z = x+ iy, satisfying the Cauchy - Riemann equation

∂f

∂z̄
= 0

(1.2.29)
∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Remark 1.2.4 The analyticity assumption is fundamental for validity of the theorem. In-
deed, in 1956 Hans Lewy found the following counterexample. He considered the following
equation

ux + i uy − 2i(x+ iy)ut = g(x, y, t). (1.2.30)

This equation has solutions analytic near the origin provided the right hand side is analytic.
However Lewy proved existence of C∞ functions g such that (1.2.30) has no solutions in any
neighborhood of x = y = t = 0. Later (1962) S.Mizohata found another counterexample
considering the equation

ux + i x uy = g(x, y). (1.2.31)

2 Linear differential operators

2.1 Definitions and main examples

Let Ω ⊂ Rd be an open subset. Denote C∞(Ω) the set of all infinitely differentiable complex
valued smooth functions on Ω. The Euclidean coordinates on Rd will be denoted x1, . . . , xd.
We will use short notations for the derivatives

∂k =
∂

∂xk

and we also introduce operators

Dk = −i ∂k, k = 1, . . . , d. (2.1.1)

For a multiindex
p = (p1, . . . , pd)

denote

|p| = p1 + · · ·+ pd

p! = p1! . . . pd!
xp = xp11 . . . xpdd
∂p = ∂p11 . . . ∂pdd , Dp = Dp1

1 . . . Dpd
d .

The derivatives, as well as the higher order operators Dp define linear operators

Dp : C∞(Ω)→ C∞(Ω), f 7→ Dpf = (−i)|p| ∂|p|f

∂xp11 . . . ∂xpdd
.
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More generally, we will consider linear differential operators of the form

A =
∑
|p|≤m

ap(x)Dp

ap(x) ∈ C∞(Ω) (2.1.2)
A : C∞(Ω)→ C∞(Ω).

We will define the order of the linear differential operator by

ordA = max|p| such that ap(x) 6= 0. (2.1.3)

Main examples are

1. Laplace operator
∆ = ∂2

1 + · · ·+ ∂2
d = −(D2

1 + . . . D2
d) (2.1.4)

2. Heat operator
∂

∂t
−∆ (2.1.5)

acting on functions on the (d+ 1)-dimensional space with the coordinates (t, x1, . . . , xd).

3. Wave operator
∂2

∂t2
−∆. (2.1.6)

4. Schrödinger operator

i
∂

∂t
+ ∆. (2.1.7)

2.2 Principal symbol of a linear differential operator

Symbol of a linear differential operator (2.1.2) is a function

a(x, ξ) =
∑
|p|≤m

ap(x)ξp, x ∈ Ω ⊂ Rd, ξ ∈ Rd. (2.2.1)

If the order of the operator is equal to m then the principal symbol is defined by

am(x, ξ) =
∑
|p|=m

ap(x)ξp. (2.2.2)

The symbols (2.2.1), (2.2.2) are polynomials in d variables ξ1, . . . , ξd with coefficients being
smooth functions on Ω.

For the above examples we have the following symbols

1. For the Laplace operator ∆ the symbol and principal symbol coincide

a = a2 = −(ξ2
1 + · · ·+ ξ2

d) ≡ −ξ2.

2. For the heat equation the full symbol is

a = i τ + ξ2
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while the principal symbol is ξ2.

3. For the wave operator again the symbol and principal symbols coincide

a = a2 = −τ2 + ξ2.

4. The symbol of the Schrödinger operator is

−(τ + ξ2)

while the principal symbol is ξ2.

Exercise 2.2.1 Prove the following formula for the symbol of a linear differential operator

a(x, ξ) = e−i x·ξA
(
ei x·ξ

)
. (2.2.3)

Here we use the notation
x · ξ = x1ξ1 + · · ·+ xd · ξd

for the natural pairing Rd × Rd → R.

Exercise 2.2.2 Given a linear differential operator A with constant coefficients denote a(ξ)
its symbol (it does not depend on x for linear differential operators with constant coefficients).
Prove that the exponential function

u(x) = ei x·ξ

is a solution to the linear differential equation

Au = 0

iff the vector ξ satisfies
a(ξ) = 0.

Exercise 2.2.3 Prove that for a pair of smooth functions u(x), S(x) and a linear differential
operator A of order m the expression of the form

e−i λ S(x)A
(
u(x)ei λ S(x)

)
is a polynomial in λ of degree m. Derive the following expression for the leading coefficient
of this polynomial

e−i λ S(x)A
(
u(x)ei λ S(x)

)
= u(x)am(x, Sx(x))λm +O(λm−1). (2.2.4)

Here

Sx =
(
∂S

∂x1
, . . . ,

∂S

∂xd

)
is the gradient of the function S(x).
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Exercise 2.2.4 Let A and B be two linear differential operators of orders k and l with the
principal symbols ak(x, ξ) and bl(x, ξ) respectively. Prove that the superposition C = A ◦B is
a linear differential operator of order ≤ k + l. Prove that the principal symbol of C is equal
to

ck+l(x, ξ) = ak(x, ξ) bl(x, ξ) (2.2.5)

in the case ordC = ordA + ordB. In the case of strict inequality ordC < ordA + ordB
prove that the product (2.2.5) of principal symbols is identically equal to zero.

The formula for computing the full symbol of the product of two linear differential opera-
tors is more complicated. We will give here the formula for the particular case of one spatial
variable x.

Exercise 2.2.5 Let a(x, ξ) and b(x, ξ) be the symbols of two linear differential operators A
and B with one spatial variable. Prove that the symbol of the superposition A ◦B is equal to

a ? b =
∑
k≥0

(−i)k

k!
∂kξ a ∂

k
xb. (2.2.6)

2.3 Change of independent variables

Let us now analyze the transformation rules of the principal symbol a(x, ξ) of an operator A
under smooth invertible changes of variables

yi = yi(x), i = 1, . . . , n. (2.3.1)

Recall that the first derivatives transform according to the chain rule

∂

∂xi
=

d∑
k=1

∂yk
∂xi

∂

∂yk
. (2.3.2)

The transformation law of higher order derivatives is more complicated. For example

∂2

∂xi∂xj
=

d∑
k,l=1

∂yk
∂xi

∂yl
∂xj

∂2

∂yk∂yl
+

d∑
k=1

∂2yk
∂xi∂xj

∂

∂yk

etc. However it is clear that after the transformation one obtains again a linear differential
operator of the same order m. More precisely define the operator

Ã =
∑

(−i)|p|ãp(y)
∂|p|

∂yp11 . . . ∂ypdd

by the equation
Af(y(x)) =

(
Ã f(y)

)
y=y(x)

.

The transformation law of the principal symbol is of particular simplicity as it follows from
the following

13



Proposition 2.3.1 Let am(x, ξ) be the principal symbol of a linear differential operator A.
Denote ãm(y, ξ̃) the principal symbol of the same operator written in the coordinates y, i.e.,
the principal symbol of the operator Ã. Then

ãm(y(x), ξ̃) = am(x, ξ) provided ξi =
d∑

k=1

∂yk
∂xi

ξ̃k. (2.3.3)

Proof: Applying the formula (2.2.4) one easily derives the equality

am(x, Sx) = ãm(y, Sy)
y = y(x)

Sx =
(
∂S

∂x1
, . . . ,

∂S

∂xd

)
, Sy =

(
∂S

∂y1
, . . . ,

∂S

∂yd

)
.

Applying the chain rule
∂S

∂xi
=

d∑
k=1

∂yk
∂xi

∂S

∂yk

we arrive at the transformation rule (2.3.3) for the particular case

ξi =
∂S

∂xi
, ξ̃k =

∂S

∂yk
.

This proves the proposition since the gradients can take arbitrary values.

2.4 Canonical form of linear differential operators of order ≤ 2 with con-
stant coefficients

Consider a first order linear differential operator

A = a1
∂

∂x1
+ · · ·+ ad

∂

∂xd
(2.4.1)

with constant coefficients a1, . . . , ad. One can find a linear transformation of the coordinates

ξi =
d∑

k=1

ckiξ̃k, i = 1, . . . , d (2.4.2)

that maps the vector a = (a1, . . . , ad) to the unit coordinate vector of the axis yd. After such
a transformation the operator A becomes the partial derivative operator

A =
∂

∂yd
.

Therefore the general solution of the first order linear differential equation

Aϕ = 0

can be written in the form

ϕ(y1, . . . , yd) = ϕ0(y1, . . . , yd−1). (2.4.3)

Here ϕ0 is an arbitrary smooth function of (d− 1) variables.
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Exercise 2.4.1 Prove that the general solution to the equation

Aϕ+ b ϕ = 0 (2.4.4)

with A of the form (2.4.1) and a constant b reads

ϕ(y1, . . . , yd) = ϕ0(y1, . . . , yd−1)e−b yd

for an arbitrary C1 function ϕ0(y1, . . . , yd−1).

Consider now a second order linear differential operator of the form

A =
d∑

i,j=1

aij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
+ c (2.4.5)

with constant coefficients. Without loss of generality one can assume the coefficient matrix
aij to be symmetric. Denote

Q(ξ) = −a2(x, ξ) =
d∑

i,j=1

aijξiξj (2.4.6)

the quadratic form coinciding with the principal symbol, up to a common sign. Recall the
following theorem from linear algebra.

Theorem 2.4.2 There exists a linear invertible change of variables of the form (2.4.2) re-
ducing the quadratic form (2.4.6) to the form

Q = ξ̃2
1 + · · ·+ ξ̃2

p − ξ̃2
p+1 − · · · − ξ̃2

p+q. (2.4.7)

The numbers p ≥ 0, q ≥ 0, p + q ≤ d do not depend on the choice of the reducing transfor-
mation.

Note that, according to the Proposition 2.3.1 the transformation (2.4.2) corresponds to
the linear invertible change of independent variables x→ y of the form

yk =
d∑
i=1

ckixi, k = 1, . . . , d. (2.4.8)

Invertibility means that the coefficient matrix of the transformation does not degenerate:

det (cki)1≤k,i≤d 6= 0.

We arrive at

Corollary 2.4.3 A second order linear differential operator with constant coefficients can be
reduced to the form

A =
∂2

∂y2
1

+ · · ·+ ∂2

∂y2
p

− ∂2

∂y2
p+1

− · · · − ∂2

∂y2
p+q

+
d∑

k=1

b̃k
∂

∂yk
+ c (2.4.9)

by a linear transformation of the form (2.4.8). The numbers p and q do not depend on the
choice of the reducing transformation.
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2.5 Elliptic and hyperbolic operators. Characteristics

Let am(x, ξ) be the principal symbol of a linear differential operator A.

Definition 2.5.1 It is said that the operator A : C∞(Ω)→ C∞(Ω) is elliptic if

am(x, ξ) 6= 0 for any ξ 6= 0, x ∈ Ω. (2.5.1)

For example the Laplace operator

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

is elliptic on Ω = Rd. The Tricomi operator

A =
∂2

∂x2
+ x

∂2

∂y2
(2.5.2)

is elliptic on the right half plane x > 0.

Definition 2.5.2 Given a point x0 ∈ Ω, the hypersurface in the ξ-space defined by the equa-
tion

am(x0, ξ) = 0 (2.5.3)

is called characteristic cone of the operator A at x0. The vectors ξ satisfying (2.5.3) are
called characteristic vectors at the point x0.

Observe that the hypersurface (2.5.3) is invariant with respect to rescalings

ξ 7→ λξ ∀ λ ∈ R (2.5.4)

since the polynomial am(x0, ξ) is homogeneous of degree m:

am(x, λ ξ) = λmam(x, ξ).

The characteristic cone of an elliptic operator is one point ξ = 0. For the example of wave
operator

A =
∂2

∂t2
−∆, ∆ =

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

(2.5.5)

the characteristic cone is given by the equation

τ2 − ξ2
1 − · · · − ξ2

d = 0. (2.5.6)

Thus it coincides with the standard cone in the Euclidean (d + 1)-dimensional space. The
characteristic cone of the heat operator

∂

∂t
−∆ (2.5.7)

is the τ -line
ξ1 = · · · = ξd = 0. (2.5.8)
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Definition 2.5.3 A hypersurface in Rd is called characteristic surface or simply characteris-
tics for the operator A if at every point x of the surface the normal vector ξ is a characteristic
vector:

am(x, ξ) = 0.

In particular the hypersurface defined by equation

S(x) = 0 (2.5.9)

is a characteristic surface if the smooth function S(x) satisfies the equation

am (x, Sx(x)) = 0 (2.5.10)

at every point of the hypersurface (2.5.9).

As it follows from the Proposition 2.3.1 the characteristics do not depend on the choice
of a system of coordinates.

Example. For a first order linear differential operator

A = a1(x)
∂

∂x1
+ · · ·+ ad(x)

∂

∂xd
(2.5.11)

the function S(x) defining a characteristic hypersurface must satisfy the equation

AS(x) = 0. (2.5.12)

It is therefore a first integral of the following system of ODEs

ẋ1 = a1(x1, . . . , xd)
. . . (2.5.13)
ẋd = ad(x1, . . . , xd)

Indeed, the equation (2.5.12) says that the function S(x) is constant along the integral curves
of the system (2.5.13). It is known from the theory of ordinary differential equations that
locally, near a point x0 such that

(
a1(x0), . . . , ad(x0)

)
6= 0 there exists a smooth invertible

change of coordinates

(x1, . . . , xd) 7→ (y1, . . . , yd), yk = yk(x1, . . . , xd)

such that, in the new coordinates the system reduces to the form

ẏ1 = 0
. . . (2.5.14)
ẏd−1 = 0
ẏd = 1

(the so-called rectification of a vector field). For the particular case of constant coefficients
the needed transformation is linear (see above). In these coordinates the general solution to
the equation (2.5.12) reads

S(y1, . . . , yd) = S0(y1, . . . , yd−1). (2.5.15)
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Let us consider a linear differential operator A acting on smooth functions on a do-
main Ω in the (d + 1)-dimensional space with Euclidean coordinates (t, x1, . . . , xd). Denote
am(t, x, τ, ξ) the principal symbol of this operator. Here

τ ∈ R, ξ = (ξ1, . . . , ξd) ∈ Rd.

Recall that the principal symbol of an operator of order m is a polynomial of degree m in τ ,
ξ1, . . . , ξd.

Definition 2.5.4 The linear differential operator A is called hyperbolic with respect to the
time variable t if for any fixed ξ 6= 0 and any (t, x) ∈ Ω the equation for τ

am(t, x, τ, ξ) = 0 (2.5.16)

has m pairwise distinct real roots

τ1(t, x, ξ), . . . , τm(t, x, ξ).

For brevity we will often say that a linear differential operator is hyperbolic if all its
characteristics are real and pairwise distinct. For elliptic operators the characteristics are
purely imaginary.

The wave operator (2.5.5) gives a simple example of a hyperbolic operator. Indeed, the
equation

τ2 = ξ2
1 + · · ·+ ξ2

d

has two distinct roots
τ = ±

√
ξ2

1 + · · ·+ ξ2
d

for any ξ 6= 0. The heat operator (2.5.7) is neither hyperbolic nor elliptic.

Finding the j-th characteristic of a hyperbolic operator requires knowledge of solutions
to the following Hamilton–Jacobi equation for the functions S = S(x, t)

∂S

∂t
= τj

(
t, x,

∂S

∂x

)
. (2.5.17)

From the course of analytical mechanics it is known that the latter problem is reduced to
integrating the Hamilton equations

ẋi = ∂H(t,x,p)
∂pi

ṗi = −∂H(t,x,p)
∂xi

 (2.5.18)

with the time-dependent Hamiltonian H(t, x, p) = τj(t, x, p). In the next section we will
consider the particular case d = 1 and apply it to the problem of canonical forms of the
second order linear differential operators in a two-dimensional space.
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2.6 Reduction to a canonical form of second order linear differential oper-
ators in a two-dimensional space

Consider a linear differential operator

A = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
, (x, y) ∈ Ω ⊂ R2. (2.6.1)

The characteristics of these operator are curves

x = x(t), y = y(t).

Here t is some parameter on the characteristic. Let (dx, dy) be the tangent vector to the
curve. Then the normal vector (−dy, dx) must satisfy the equation

a(x, y)dy2 − 2b(x, y)dx dy + c(x, y)dx2 = 0. (2.6.2)

Assuming a(x, y) 6= 0 one obtains a quadratic equation for the vector dy/dx

a(x, y)
(
dy

dx

)2

− 2b(x, y)
dy

dx
+ c(x, y) = 0. (2.6.3)

The operator (2.6.1) is hyperbolic iff the discriminant of this equation is positive:

b2 − a c > 0. (2.6.4)

For elliptic operators the discriminant is strictly negative.

For a hyperbolic operator one has two families of characteristics to be found from the
ODEs

dy

dx
=
b(x, y) +

√
b2(x, y)− a(x, y) c(x, y)
a(x, y)

(2.6.5)

dy

dx
=
b(x, y)−

√
b2(x, y)− a(x, y) c(x, y)
a(x, y)

. (2.6.6)

Let
φ(x, y) = c1, ψ(x, y) = c2 (2.6.7)

be the equations of the characteristics1. Here c1 and c2 are two integration constants. Such
curves pass through any point (x, y) ∈ Ω. Moreover they are not tangent at every point. Let
us introduce new local coordinates u, v by

u = φ(x, y), v = ψ(x, y). (2.6.8)

Lemma 2.6.1 The change of coordinates

(x, y) 7→ (u, v)

is locally invertible. Moreover the inverse functions

x = x(u, v), y = y(u, v)

are smooth.
1The function φ(x, y), resp. ψ(x, y), is a first integral for the ODE (2.6.5), resp. (2.6.6), that is, it takes

constant values along the integral curves of this differential equation.
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Proof: We have to check non-vanishing of the Jacobian

det
(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
= det

(
φx φy
ψx ψy

)
6= 0. (2.6.9)

By definition the first derivatives of the functions φ and ψ correspond to two different roots
of the same quadratic equation

a(x, y)φ2
x + 2b(x, y)φxφy + c(x, y)φ2

y = 0, a(x, y)ψ2
x + 2b(x, y)ψxψy + c(x, y)ψ2

y = 0.

The determinant (2.6.9) vanishes iff the gradients of φ and ψ are proportional:

(φx, φy) ∼ (ψx, ψy).

This contradicts the requirement to have the roots distinct.

Let us rewrite the linear differential operator A in the new coordinates:

A = ã(u, v)
∂2

∂u2
+ 2b̃(u, v)

∂2

∂u∂v
+ c̃(u, v)

∂2

∂v2
+ . . . (2.6.10)

where the dots stand for the terms with the low order derivatives.

Theorem 2.6.2 In the new coordinates the linear differential operator reads

A = 2b̃(u, v)
∂2

∂u ∂v
+ . . .

Proof: In the new coordinates the characteristic have the form

u = c1, v = c2

for arbitrary constants c1 and c2. Therefore their tangent vectors (1, 0) and (0, 1) must satisfy
the equation for characteristics

ã(u, v)dv2 − 2b̃(u, v)du dv + c̃(u, v)du2 = 0.

This implies ã(u, v) = c̃(u, v) = 0.

For the case of elliptic operator (2.6.1) the analogue of the differential equations (2.6.5),
(2.6.6) are complex conjugated equations

dy

dx
=
b± i

√
a c− b2
a

, a = a(x, y), b = b(x, y), c = c(x, y). (2.6.11)

Assuming analyticity of the functions a(x, y), b(x, y), c(x, y) one can prove existence of a
complex valued first integral

S(x, y) = φ(x, y) + i ψ(x, y) (2.6.12)

satisfying
aSx +

(
b− i

√
a c− b2

)
Sy = 0. (2.6.13)

Let us introduce new system of coordinates by

u = φ(x, y), v = ψ(x, y). (2.6.14)
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Exercise 2.6.3 Prove that the transformation

(x, y) 7→ (u, v)

is locally smoothly invertible. Prove that the operator A in the new coordinates takes the form

A = ã(u, v)
(
∂2

∂u2
+

∂2

∂v2

)
+ . . . (2.6.15)

with some nonzero smooth function ã(u, v). Like above the dots stand for the terms with
lower order derivatives.

Let us now consider the case of linear differential operators of the form (2.6.1) with
identically vanishing discriminant

b2(x, y)− a(x, y) c(x, y) ≡ 0. (2.6.16)

Operators of this class are called parabolic. In this case we have only one characteristic to be
found from the equation

dy

dx
=
b(x, y)
a(x, y)

. (2.6.17)

Let φ(x, y) be a first integral of this equation

aφx + b φy = 0, φ2
x + φ2

y 6= 0. (2.6.18)

Choose an arbitrary smooth function ψ(x, y) such that

det
(
φx φy
ψx ψy

)
6= 0.

In the coordinates
u = φ(x, y), v = ψ(x, y)

the coefficient ã(u, v) vanishes, since the line φ(x, y) = const is a characteristic. But then the
coefficient b̃(u, v) must vanish either because of vanishing of the discriminant

b̃2 − ã c̃ = 0.

Thus the canonical form of a parabolic operator is

A = c̃(u, v)
∂2

∂v2
+ . . . (2.6.19)

where the dots stand for the terms of lower order.

2.7 General solution of a second order hyperbolic equation with constant
coefficients in the two-dimensional space

Consider a hyperbolic operator

A = a
∂2

∂x2
+ 2b

∂2

∂x ∂y
+ c

∂2

∂y2
(2.7.1)
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with constant coefficients a, b, c satisfying the hyperbolicity condition

b2 − a c > 0.

The equations for characteristics (2.6.5), (2.6.6) can be easily integrated. This gives two
linear first integrals

u = y − λ1x, v = y − λ2x

(2.7.2)

λ1,2 =
b±
√
b2 − a c
a

.

In the new coordinates the hyperbolic equation Aϕ = 0 reduces to

∂2ϕ

∂u∂v
= 0. (2.7.3)

The general solution to this equation can be written in the form

ϕ = f(y − λ1x) + g(y − λ2x) (2.7.4)

where f and g are two arbitrary smooth2 functions of one variable.

For example consider the wave equation

ϕtt = a2ϕxx (2.7.5)

where a is a positive constant. The general solution reads

ϕ(x, t) = f(x− a t) + g(x+ a t). (2.7.6)

Observe that f(x−a t) is a right-moving wave propagating with constant speed a. In a similar
way g(x + a t) is a left-moving wave. Therefore the general solution to the wave equation
(2.7.5) is a superposition of two such waves.

2.8 Exercises to Section 2

Exercise 2.8.1 Reduce to the canonical form the following equations

uxx + 2uxy − 2uxz + 2uyy + 6uzz = 0 (2.8.1)
uxy − uxz + ux + uy − uz = 0. (2.8.2)

Exercise 2.8.2 Reduce to the canonical form the following equations

x2uxx + 2x y uxy − 3y2uyy − 2xux + 4y uy + 16x4u = 0 (2.8.3)
y2uxx + 2x y uxy + 2x2uyy + y uy = 0 (2.8.4)
uxx − 2uxy + uyy + ux + uy = 0 (2.8.5)

Exercise 2.8.3 Find general solution to the following equations

x2uxx − y2uyy − 2y uy = 0 (2.8.6)
x2uxx − 2x y uxy + y2uyy + xux + y uy = 0. (2.8.7)

2It suffices to take the functions of the C2 class.
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3 Wave equation

3.1 Vibrating string

We consider small oscillations of an elastic string on the (x, u)-plane. Let the x-axis be the
equilibrium state of the string. Denote u(x, t) the displacement of the point x at a time t. It
will be assumed to be orthogonal to the x-axis. Thus the shape of the string at the time t is
given by the graph of the function u(x, t). The velocity of the string at the point x is equal to
ut(x, t). We will also assume that the only force to be taken into consideration is the tension
directed along the string. In particular the string will be assumed to be totally elastic.

Consider a small interval of the string from x to x + ∆x. We will write the equation of
motion for this interval. Denote T = T (x) the tension of the string at the point x. The
horizontal and vertical components at the points x and x+ ∆x are equal to

Thor(x) = T1 cosα, Tvert(x) = T1 sinα
Thor(x+ ∆x) = T2 cosβ, Tvert(x+ ∆x) = T2 sinβ

where T1 = T (x), T2 = T (x+ ∆x) (see Fig. 1).

Fig. 1.

The angle α between the string and the x-axis at the point x is given by

cosα =
1√

1 + u2
x

, sinα =
ux√

1 + u2
x

.

The oscillations are assumed to be small. More precisely this means that the term ux is
small. So at the leading approximation we can neglect the square of it to arrive at

cosα ' 1, sinα ' ux(x)
cosβ ' 1, sinβ ' ux(x+ ∆x)

So the horizontal and vertical components at the points x and x+ ∆x are equal to

Thor(x) ' T1, Tvert(x) ' T1ux(x)
Thor(x+ ∆x) ' T2, Tvert(x+ ∆x) = T2ux(x+ ∆(x),

23



Since the string moves in the u-direction, the horizontal components at the points x and
x+ ∆x must coincide:

T1 = T (x) = T (x+ ∆x) = T2.

Therefore T (x) ≡ T = const.

Let us now consider the vertical components. The resulting force acting on the piece of
the string is equal to

f = T2 sinβ − T1 sinα = T ux(x+ ∆x)− T ux(x) ' T uxx(x) ∆x.

On another side the vertical component of the total momentum of the piece of the string is
equal to

p =
∫ x+∆x

x
ρ(x)ut(x, t) ds(x) ' ρ(x)ut(x, t) ∆x

where ρ(x) is the linear mass density of the string and

ds(x) =
dx√

1 + u2
x(x)

' dx

is the element of the length3. The second Newton law

pt = f

in the limit ∆x→ 0 yields
ρ(x)utt = T uxx.

In particular in the case of constant mass density one arrives at the equation

utt = a2uxx (3.1.1)

where the constant a is defined by

a2 =
T

ρ
. (3.1.2)

Exercise 3.1.1 Prove that the plane wave

u(x, t) = Aei(k x+ω t) (3.1.3)

satisfies the wave equation (3.1.1) if and only if the real parameters ω and k satisfy the
following dispersion relation

ω = ±a k. (3.1.4)
3This means that the length s of the segment of the string between x = x1 and x = x2 is equal to

s =

Z x2

x1

ds(x),

and the total mass m of the same segment is equal to

m =

Z x2

x1

ρ(x) ds(x).
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The parameters ω and k are called resp. the frequency4 and wave number of the plane
wave. The arbitrary parameter A is called the amplitude of the wave. It is clear that the
plane wave is periodic in x with the period

L =
2π
k

(3.1.5)

since the exponential function is periodic with the period 2π i. The plane wave is also periodic
in t with the period

T =
2π
ω
. (3.1.6)

Due to linearity of the wave equation the real and imaginary parts of the solution (3.1.3) solve
the same equation (3.1.1). Assuming A to be real we thus obtain the real valued solutions

Reu = A cos(k x+ ω t), Imu = A sin(k x+ ω t). (3.1.7)

3.2 D’Alembert formula

Let us start with considering oscillations of an infinite string. That is, the spatial variable
x varies from −∞ to ∞. The Cauchy problem for the equation (3.1.1) is formulated in the
following way: find a solution u(x, t) defined for t ≥ 0 such that at t = 0 the initial conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x) (3.2.1)

hold true. The solution is given by the following D’Alembert formula:

Theorem 3.2.1 For arbitrary initial data φ(x) ∈ C2(R), ψ(x) ∈ C1(R) the solution to the
Cauchy problem (3.1.1), (3.2.1) exists and is unique. Moreover it is given by the formula

u(x, t) =
φ(x− a t) + φ(x+ a t)

2
+

1
2a

∫ x+a t

x−a t
ψ(s) ds. (3.2.2)

Proof: As we have proved in Section 2.7 the general solution to the equation (3.1.1) can be
represented in the form

u(x, t) = f(x− a t) + g(x+ a t). (3.2.3)

Let us choose the functions f and g in order to meet the initial conditions (3.2.1). We obtain
the following system:

f(x) + g(x) = φ(x)
(3.2.4)

a
[
g′(x)− f ′(x)

]
= ψ(x).

Integrating the second equation yields

g(x)− f(x) =
1
a

∫ x

x0

ψ(s) ds+ C

4In physics literature the number −ω is called frequency.

25



where C is an integration constant. So

f(x) =
1
2
φ(x)− 1

2a

∫ x

x0

ψ(s) ds− 1
2
C

g(x) =
1
2
φ(x) +

1
2a

∫ x

x0

ψ(s) ds+
1
2
C.

Thus

u(x, t) =
1
2
φ(x− a t)− 1

2a

∫ x−a t

x0

ψ(s) ds+
1
2
φ(x+ a t) +

1
2a

∫ x+a t

x0

ψ(s) ds.

This gives (3.2.2). It remains to check that, given a pair of functions φ(x) ∈ C2, ψ(x) ∈ C1

the D’Alembert formula yields a solution to (3.1.1). Indeed, the function (3.2.2) is twice
differentiable in x and t. It remains to substitute this function into the wave equation and
check that the equation is satisfied. We leave it as an exercise for the reader. It is also
straightforward to verify validity of the initial data (3.2.1).

Example. For the constant initial data

u(x, 0) = u0, ut(x, 0) = v0

the solution has the form
u(x, t) = u0 + v0t.

This solution corresponds to the free motion of the string with the constant speed v0.

Moreover the solution to the wave equation is stable with respect to small variations of
the initial data. Namely,

Exercise 3.2.2 For any ε > 0 and any T > 0 there exists δ > 0 such that the solutions
u(x, t) and ũ(x, t) of the two Cauchy problems with initial conditions (3.2.1) and

ũ(x, 0) = φ̃(x), ũt(x, 0) = ψ̃(x) (3.2.5)

satisfy
sup

x∈R, t∈[0,T ]
|ũ(x, t)− u(x, t)| < ε (3.2.6)

provided the initial conditions satisfy

sup
x∈R
|φ̃(x)− φ(x)| < δ, sup

x∈R
|ψ̃(x)− ψ(x)| < δ. (3.2.7)

Remark 3.2.3 The property formulated in the above exercise is usually referred to as well
posedness of the Cauchy problem (3.1.1), (3.2.1). We will return later to the discussion of
this important property.
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3.3 Some consequences of the D’Alembert formula

Let (x0, t0) be a point of the (x, t)-plane, t0 > 0. As it follows from the D’Alembert formula
the value of the solution at the point (x0, t0) depends only on the values of φ(x) at x = x0±a t0
and value of ψ(x) on the interval [x0 − a t0, x0 + a t0]. The triangle with the vertices (x0, t0)
and (x0 ± a t0, 0) is called the dependence domain of the segment [x0 − a t0, x0 + a t0]. The
values of the solution inside this triangle are completely determined by the values of the
initial data on the segment.

Fig. 2. The dependence domain of the segment [x0 − a t0, x0 + a t0].

Another important definition is the influence domain for a given segment [x1, x2] consider
the domain defined by inequalities

x+ a t ≥ x1, x− a t ≤ x2, t ≥ 0. (3.3.1)

Changing the initial data on the segment [x1, x2] will not change the solution u(x, t) outside
the influence domain.

Fig. 3. The influence domain of the segment [x1, x2].

Remark 3.3.1 It will be convenient to slightly extend the class of initial data admitting
piecewise smooth functions φ(x), ψ(x) (all singularities of the latter must be integrable). If
xj are the singularities of these functions, j = 1, 2, . . . , then the solution u(x, t) given by the
D’Alembert formula will satisfy the wave equation outside the lines

x = ±a t+ xj , t ≥ 0, j = 1, 2, . . .

The above formula says that the singularities of the solution propagate along the character-
istics.
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Example. Let us draw the profile of the string for the triangular initial data φ(x) shown
on Fig. 4 and ψ(x) ≡ 0.

Fig. 4. The solution of the Cauchy problem for wave equation on the real line with a
triangular initial profile at different instants of time.

3.4 Semi-infinite vibrating string

Let us begin with the following simple observation.

Lemma 3.4.1 Let u(x, t) be a solution to the wave equation. Then so are the functions

±u(±x,±t)

with arbitrary choices of all three signs.

Proof: This follows from linearity of the wave equation and from its invariance with respect
to the spatial reflection

x 7→ −x

and time inversion
t 7→ −t.
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Let us consider oscillations of a string with a fixed point. Without loss of generality we
can assume that the fixed point is at x = 0. We arrive at the following Cauchy problem for
(3.1.1) on the half-line x > 0:

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x > 0. (3.4.1)

The solution must also satisfy the boundary condition

u(0, t) = 0, t ≥ 0. (3.4.2)

The problem (3.1.1), (3.4.1), (3.4.2) is often called mixed problem since we have both initial
conditions and boundary conditions.

The solution to the mixed problem on the half-line can be reduced to the problem on the
infinite line by means of the following trick.

Lemma 3.4.2 Let the initial data φ(x), ψ(x) for the Cauchy problem (3.1.1), (3.2.1) be odd
functions of x. Then the solution u(x, t) is an odd function for all t.

Proof: Denote
ũ(x, t) := −u(−x, t).

According to Lemma 3.4.1 the function ũ(x, t) satisfies the same equation. At t = 0 we have

ũ(x, 0) = −u(−x, 0) = −φ(−x) = φ(x), ũt(x, 0) = −ut(−x, 0) = −ψ(−x) = ψ(x)

since φ and ψ are odd functions. Therefore ũ(x, t) is a solution to the same Cauchy problem
(3.1.1), (3.2.1). Due to uniqueness ũ(x, t) = u(x, t), i.e. −u(−x, t) = u(x, t) for all x and t.

We are now ready to present a recipe for solving the mixed problem for the wave equation
on the half-line. Let us extend the initial data onto entire real line as odd functions. We
arrive at the following Cauchy problem for the wave equation:

u(x, 0) =
{

φ(x), x > 0
−φ(−x), x < 0

, ut(x, 0) =
{

ψ(x), x > 0
−ψ(−x), x < 0

(3.4.3)

According to Lemma 3.4.2 the solution u(x, t) to the Cauchy problem (3.1.1), (3.4.3) given
by the D’Alembert formula will be an odd function for all t. Therefore

u(0, t) = −u(0, t) = 0 for all t.

Example. Consider the evolution of a triangular initial profile on the half-line. The graph
of the initial function φ(x) is non-zero on the interval [l, 3l]; the initial velocity ψ(x) = 0.
The evolution is shown on Fig. 5 for few instants of time. Observe the reflected profile (the
dotted line) on the negative half-line.
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In a similar way one can treat the mixed problem on the half-line with a free boundary.
In this case the vertical component T ux of the tension at the left edge must vanish at all
times. Thus the boundary condition (3.4.2) has to be replaced with

ux(0, t) = 0 for all t ≥ 0. (3.4.4)

One can solve the mixed problem (3.1.1), (3.4.1), (3.4.4) by using even extension of the initial
data onto the negative half-line. We leave the details of the construction as an exercise for
the reader.

Fig. 5. The solution of the Cauchy problem for wave equation on the half-line with a
triangular initial profile.
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3.5 Periodic problem for wave equation. Introduction to Fourier series

Let us look for solutions to the wave equation (3.1.1) periodic in x with a given period L > 0.
Thus we are looking for a solution u(x, t) satisfying

u(x+ L, t) = u(x, t) for any t ≥ 0. (3.5.1)

The initial data of the Cauchy problem

u(x, 0) = φ(x), ut(x, 0) = ψ(x) (3.5.2)

must also be L-periodic functions.

Theorem 3.5.1 Given L-periodic initial data φ(x) ∈ C2(R), ψ(x) ∈ C1(R) the periodic
Cauchy problem (3.5.1), (3.5.2) for the wave equation (3.1.1) has a unique solution.

Proof: According to the results of Section 3.2 the solution u(x, t) to the Cauchy problem
(3.1.1), (3.5.2) on −∞ < x <∞ exists and is unique and is given by the D’Alembert formula.
Denote

ũ(x, t) := u(x+ L, t).

Since the coefficients of the wave equation do not depend on x the function ũ(x, t) satisfies
the same equation. The initial data for this function have the form

ũ(x, 0) = φ(x+ L) = φ(x), ũt(x, t) = ψ(x+ L) = ψ(x)

because of periodicity of the functions φ(x) and ψ(x). So the initial data of the solutions
u(x, t) and ũ(x, t) coincide. From the uniqueness of the solution we conclude that ũ(x, t) =
u(x, t) for all x and t, i.e. the function u(x, t) is periodic in x with the same period L.

Exercise 3.5.2 Prove that the complex exponential function eikx is L-periodic iff the wave
number k has the form

k =
2πn
L

, n ∈ Z. (3.5.3)

In the following two exercises we will consider the particular case L = 2π. In this case
the complex exponential

e
2πinx
L

obtained in the previous exercise reduces to einx.

Exercise 3.5.3 Prove that the solution of the periodic Cauchy problem with the Cauchy data

u(x, 0) = einx, ut(x, 0) = 0 (3.5.4)

is given by the formula
u(x, t) = einx cosnat. (3.5.5)
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Exercise 3.5.4 Prove that the solution of the periodic Cauchy problem with the Cauchy data

u(x, 0) = 0, ut(x, 0) = einx (3.5.6)

is given by the formula

u(x, t) =
{
einx sinnat

na , n 6= 0
t, n = 0.

(3.5.7)

Using the theory of Fourier series we can represent any solution to the periodic problem
to the wave equation as a superposition of the solutions (3.5.5), (3.5.7). Let us first recall
some basics of the theory of Fourier series.

Let f(x) be a 2π-periodic continuously differentiable complex valued function on R. The
Fourier series of this function is defined by the formula∑

n∈Z
cne

inx (3.5.8)

cn =
1

2π

∫ 2π

0
f(x)e−inxdx. (3.5.9)

The following theorem is a fundamental result of the theory of Fourier series.

Theorem 3.5.5 For any function f(x) satisfying the above conditions the Fourier series is
uniformly convergent to the function f(x).

In particular we conclude that any C1-smooth 2π-periodic function f(x) can be represented
as a sum of uniformly convergent Fourier series

f(x) =
∑
n∈Z

cne
inx, cn =

1
2π

∫ 2π

0
f(x)e−inxdx. (3.5.10)

For completeness we remind the proof of this Theorem.

Let us introduce Hermitean inner product in the space of complex valued 2π-periodic
continuous functions:

(f, g) =
1

2π

∫ 2π

0
f̄(x)g(x) dx. (3.5.11)

Here the bar stands for complex conjugation. This inner product satisfies the following
properties:

(g, f) = (f, g) (3.5.12)

(λf1 + µf2, g) = λ̄(f1, g) + µ̄(f2, g)

(f, λg1 + µg2) = λ(f, g1) + µ(f, g2)
for any λ, µ ∈ C (3.5.13)

(f, f) > 0 for any nonzero continuous function f(x). (3.5.14)

The real nonnegative number (f, f) will be used for defining the L2-norm of the function:

‖f‖ :=
√

(f, f). (3.5.15)
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Exercise 3.5.6 Prove that the L2-norm satisfies the triangle inequality:

‖f + g‖ ≤ ‖f‖+ ‖g‖. (3.5.16)

Observe that the complex exponentials einx form an orthonormal system with respect to
the inner product (3.5.11):

(
eimx, einx

)
= δmn =

{
1, m = n
0 m 6= n

. (3.5.17)

(check it!).

Let f(x) be a continuous function; denote cn its Fourier coefficients. The following formula

cn = (einx, f), n ∈ Z (3.5.18)

gives a simple interpretation of the Fourier coefficients as the coefficients of decomposition of
the function f with respect to the orthonormal system made from exponentials. Moreover,
the partial sum of the Fourier series

SN (x) =
N∑

n=−N
cne

inx (3.5.19)

can be interpreted as the orthogonal projection of the vector f onto the (2N+1)-dimensional
linear subspace

VN = span
(
1, e±ix, e±2ix, . . . , e±iNx

)
(3.5.20)

consisting of all trigonometric polynomials

PN (x) =
N∑

n=−N
pne

inx (3.5.21)

of degree N . Here p0, p±1, . . . p±N are arbitrary complex numbers.

Lemma 3.5.7 The following inequality holds true:

N∑
n=−N

|cn|2 ≤ ‖f‖2. (3.5.22)

The statement of this lemma is called Bessel inequality.

Proof: We have

0 ≤ ‖f(x)−
N∑

n=−N
cne

inx‖2 =

(
f(x)−

N∑
n=−N

cne
inx, f(x)−

N∑
n=−N

cne
inx

)

= (f, f)−
N∑

n=−N

[
cn
(
f, einx

)
+ c̄n

(
einx, f

)]
+

N∑
m,n=−N

c̄mcn
(
eimx, einx

)
.
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Using (3.5.18) and orthonormality (3.5.17) we recast the right hand side of the last equation
in the form

(f, f)−
N∑

n=−N
|cn|2.

This proves Bessel inequality.

Geometrically the Bessel inequality says that the square length of the orthogonal projec-
tion of a vector onto the linear subspace VN cannot be longer than the square length of the
vector itself.

Corollary 3.5.8 For any continuous function f(x) the series of squares of absolute values
of Fourier coefficients converges: ∑

n∈Z
|cn|2 <∞. (3.5.23)

The following extremal property says that the N -th partial sum of the Fourier series gives
the best L2-approximation of the function f(x) among all trigonometric polynomials of degree
N .

Lemma 3.5.9 For any trigonometric polynomial PN (x) of degree N the following inequality
holds true

‖f(x)− SN (x)‖ ≤ ‖f(x)− PN (x)‖. (3.5.24)

Here SN (x) is the N -th partial sum (3.5.19) of the Fourier series of the function f . The
equality in (3.5.24) takes place iff the trigonometric polynomial PN (x) coincides with SN (x),
i.e.,

pn =
1

2π

∫ 2π

0
f(x)e−inxdx, n = 0,±1,±2, . . . ,±N,

Proof: From (3.5.18) we derive that

(f(x)− SN (x), PN (x)) = 0 for any PN (x) ∈ VN .

Hence

‖f(x)− PN (x)‖2 = ‖(f − SN ) + (SN − PN‖2 =
= (f − SN , f − SN ) + (f − SN , QN ) + (QN , f − SN ) + (QN , QN )
= (f − SN , f − SN ) + (QN , QN ) ≥ (f − SN , f − SN ) = ‖f − SN‖2.

Here we denote
QN = SN (x)− PN (x) ∈ VN .

Clearly the equality takes place iff QN = 0, i.e. PN = SN .

Lemma 3.5.10 For any continuous 2π-periodic function the following Parseval equality
holds true: ∑

n∈Z
|cn|2 = ‖f‖2. (3.5.25)
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The Parseval equality can be considered as an infinite-dimensional analogue of the Pythago-
ras theorem: sum of the squares of orthogonal projections of a vector on the coordinate axes
is equal to the square length of the vector.

Proof: According to Stone – Weierstrass theorem5 any continuous 2π-periodic function can
be uniformly approximated by Fourier polynomials

PN (x) =
N∑

n=−N
pne

inx. (3.5.26)

That means that for a given function f(x) and any ε > 0 there exists a trigonometric poly-
nomial PN (x) of some degree N such that

supx∈[0,2π] |f(x)− PN (x)| < ε.

Then

‖f − PN‖2 =
1

2π

∫ 2π

0
|f(x)− PN (x)|2dx < ε2.

Therefore, due to the extremal property (see Lemma 3.5.9 above), we obtain the following
inequality

‖f − SN‖2 < ε2.

Repeating the computation used in the proof of Bessel inequality

‖f − SN‖2 = ‖f‖2 −
N∑

n=−N
|cn|2 < ε2

5The Stone – Weierstrass theorem is a very general result about uniform approximation of continuous
functions on a compact K in a metric space. Let us recall this important theorem. Let A ⊂ C(K) be a subset
of functions in the space of continuous real- or complex-valued functions on a compact K. The following
requirements must hold true.

1. A must be a subalgebra in C(K), i.e. for f, g ∈ A, α, β ∈ R (or α, β ∈ C) the linear combination and the
product belong to A:

αf + β g ∈ A, f · g ∈ A.
2. The functions in A must separate points in K, i.e., ∀x, y ∈ K, x 6= y there exists f ∈ A such that

f(x) 6= f(y).

3. The subalgebra is non-degenerate, i.e., ∀x ∈ K there exists f ∈ A such that f(x) 6= 0.
The last condition has to be imposed in the complex situation.

4. The subalgebra A is said to be self-adjoint if for any function f ∈ A the complex conjugate function f̄ also
belongs to A.

Theorem 3.5.11 Given an algebra of functions A ⊂ C(K) that separates points, is non-degenerate and, for
complex-valued functions, is self-adjoint then A is an everywhere dense subset in C(K).

Recall that density means that for any continuous function F ∈ C(K) and an arbitrary ε > 0 there exists
f ∈ A such that

supx∈K |F (x)− f(x)| < ε.

In the particular case of algebra of polynomials one obtains the classical Weierstrass theorem about polynomial
approximations of continuous functions on a finite interval. For the needs of the theory of Fourier series one has
to apply the Stone – Weierstrass theorem to the subalgebra of Fourier polynomials in the space of continuous
2π-periodic functions. We leave as an exercise to verify applicability of the Stone – Weierstrass theorem in
this case.

35



we arrive at the proof of Lemma.

The Parseval equality is also referred to as completeness of the trigonometric system of
functions

1, e±ix, e±2ix, . . . .

For the case of infinite-dimensional spaces equipped with a Hermitean (or Euclidean) inner
product the property of completeness is the right analogue of the notion of an orthonormal
basis of the space.

Corollary 3.5.12 Two continuous 2π-periodic functions f(x), g(x) with all equal Fourier
coefficients identically coincide.

Proof: Indeed, the difference h(x) = f(x) − g(x) is continuous function with zero Fourier
coefficients. The Parseval equality implies ‖h‖2 = 0. So h(x) ≡ 0.

We can now prove uniform convergence of the Fourier series of a C1-function. Denote c′n
the Fourier coefficients of the derivative f ′(x). Integrating by parts we derive the following
formula:

cn =
1

2π

∫ 2π

0
f(x)e−inx dx = − 1

2πin
f(x)e−inx

∣∣2π
0 +

1
2πin

∫ 2π

0
f ′(x)e−inx dx = − i

n
c′n.

This implies convergence of the series ∑
n∈Z
|cn|.

Indeed,

|cn| =
|c′n|
n
≤ 1

2

(
|c′n|2 +

1
n2

)
.

The series
∑
|c′n|2 converges according to the Corollary 3.5.8; convergence of the series

∑ 1
n2

is well known. Using Weierstrass theorem we conclude that the Fourier series converges
absolutely and uniformly ∑

n∈Z

∣∣cneinx∣∣ =
∑
n∈Z
|cn| <∞.

Denote g(x) the sum of this series. It is a continuos function. The Fourier coefficients of g
coincide with those of f : (

einx, g
)

= cn.

Hence f(x) ≡ g(x).

For the specific case of real valued function the Fourier coefficients satisfy the following
property.

Lemma 3.5.13 The smooth function f(x) is real valued iff its Fourier coefficients satisfy

c̄n = c−n for all n ∈ Z. (3.5.27)
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Proof: Reality of the function can be written in the form

f̄(x) = f(x).

Since
einx = e−inx

we have

c̄n =
1

2π

∫ 2π

0
f̄(x)einxdx = c−n.

Note that the coefficient

c0 =
1

2π

∫ 2π

0
f(x) dx

is always real if f(x) is a real valued function.

Let us establish the correspondence of the complex form (3.5.10) of the Fourier series of
a real valued function with the real form.

Lemma 3.5.14 Let f(x) be a real valued 2π-periodic smooth function. Denote cn its Fourier
coefficients (3.5.9). Introduce coefficients

an = cn + c−n =
1
π

∫ 2π

0
f(x) cosnx dx, n = 0, 1, 2, . . . (3.5.28)

bn = i(cn − c−n) =
1
π

∫ 2π

0
f(x) sinnx dx, n = 1, 2, . . . (3.5.29)

Then the function f(x) is represented as a sum of uniformly convergent Fourier series of the
form

f(x) =
a0

2
+
∑
n≥1

(an cosnx+ bn sinnx) . (3.5.30)

We leave the proof of this Lemma as an exercise for the reader.

Exercise 3.5.15 For any real valued continuous function f(x) prove the following version6

of Bessel inequality (3.5.22):

a2
0

2
+

N∑
n=1

(a2
n + b2n) ≤ 1

π

∫ 2π

0
f2(x) dx (3.5.31)

and Parseval equality (3.5.25)

a2
0

2
+
∞∑
n=1

(a2
n + b2n) =

1
π

∫ 2π

0
f2(x) dx. (3.5.32)

6Notice a change in the normalization of the L2 norm.
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The following statement can be used in working with functions with an arbitrary period.

Exercise 3.5.16 Given an arbitrary constant c ∈ R and a solution u(x, t) to the wave equa-
tion (3.1.1) then

ũ(x, t) = u (c x, c t) (3.5.33)

also satisfies (3.1.1).

Note that for c 6= 0 the function ũ(x, t) is periodic in x with the period L = 2π
c if u(x, t)

was 2π-periodic.

For non-smooth functions the problem of convergence of Fourier series is more delicate.
Let us consider an example giving some idea about the convergence of Fourier series for
piecewise smooth functions. Consider the function

signx =


1, x > 0
0, x = 0
−1, x < 0

. (3.5.34)

This function will be considered on the interval [−π, π] and then continued 2π-periodically
onto entire real line. The Fourier coefficients of this function can be easily computed:

an = 0, bn =
2
π

(1− (−1)n)
n

.

So the Fourier series of this functions reads
4
π

∑
k≥1

sin(2k − 1)x
2k − 1

. (3.5.35)

One can prove that this series converges to the sign function at every point of the interval
(−π, π). Moreover this convergence is uniform on every closed subinterval non containing 0
or ±π. However the character of convergence near the discontinuity points x = 0 and x = ±π
is more complicated as one can see from the following graph of a partial sum of the series
(3.5.35).
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Fig. 6. Graph of the partial sum Sn(x) = 4
π

∑n
k=1

sin(2k−1)x
2k−1 for n = 50.

In general for piecewise smooth functions f(x) with some number of discontinuity points
one can prove that the Fourier series converges to the mean value 1

2 (f(x0 + 0) + f(x0 − 0))
at every first kind discontinuity point x0. The non vanishing oscillatory behavior of partial
sums near discontinuity points is known as Gibbs phenomenon (see Exercise 3.8.9 below).

Let us return to the wave equation. Using the theory of Fourier series we can represent
any periodic solution to the Cauchy problem (3.5.2) as a superposition of solutions of the
form (3.5.5), (3.5.7). Namely, let us expand the initial data in Fourier series:

φ(x) =
∑
n∈Z

φne
inx, ψ(x) =

∑
n∈Z

ψne
inx. (3.5.36)

Then the solution to the periodic Cauchy problem reads

u(x, t) =
∑
n∈Z

φne
inx cos ant+ ψ0t+

1
a

∑
n∈Z\0

ψne
inx sin ant

n
. (3.5.37)

Remark 3.5.17 The formula (3.5.37) says that the solutions

u(1)
n (x, t) = einx cos ant

(3.5.38)

u(2)
n (x, t) =


t, n = 0

einx sin ant
n , n 6= 0

for n ∈ Z form a basis in the space of 2π-periodic solutions to the wave equation. Observe
that all these solutions can be written in the so-called separated form

u(x, t) = X(x)T (t) (3.5.39)

for some smooth functions X(x) and T (t). A rather general method of separation of variables
for solving boundary value problems for linear PDEs has this observation as a starting point.
This method will be explained later on.

3.6 Finite vibrating string. Standing waves

Let us proceed to considering a finite string of the length l. We begin with considering
the oscillations of the string with fixed endpoints. So we have to solve the following mixed
problem for the wave equation (3.1.1)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ [0, l] (3.6.1)

u(0, t) = 0, u(l, t) = 0 for all t > 0. (3.6.2)

The idea of solution is, again, in a suitable extension of the problem onto entire line.
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Lemma 3.6.1 Let the initial data φ(x), ψ(x) of the Cauchy problem (3.2.1) for the wave
equation on R be odd 2l-periodic functions. Then the solution u(x, t) will also be an odd
2l-periodic function for all t satisfying the boundary conditions (3.6.2).

Proof: As we already know from Lemma 3.4.2 the solution is an odd function for all t. So

u(0, t) = 0 for all t > 0.

Next, the solution will be 2l-periodic for all t according to Theorem 3.5.1 above. So

u(l − x, t) = −u(x− l, t) = −u(x+ l, t).

Substituting x = 0 we get

u(l, t) = −u(l, t), i.e. u(l, t) = 0.

The above Lemma gives an algorithm for solving the mixed problem (3.6.1), (3.6.2) for
the wave equation. Namely, we extend the initial data φ(x), ψ(x) from the interval [0, x]
onto the real axis as odd 2l-periodic functions. After this we apply D’Alembert formula to
the extended initial data. The resulting solution will satisfy the initial conditions (3.6.1) on
the interval [0, l] as well as the boundary conditions (3.6.2) at the end points of the interval.

We will apply now the technique of Fourier series to the mixed problem (3.6.1), (3.6.2).

Lemma 3.6.2 Let a 2π-periodic functions f(x) be represented as the sum of its Fourier
series

f(x) =
∑
n∈Z

cne
inx, cn =

1
2π

∫ π

−π
f(x)e−inxdx.

The function f(x) is even/odd iff the Fourier coefficients satisfy

c−n = ±cn

respectively.

Proof: For an even function one must have∑
n∈Z

cne
inx = f(x) = f(−x) =

∑
n∈Z

cne
−inx =

∑
n∈Z

c−ne
inx.

This proves c−n = cn. A similar argument gives c−n = −cn for the case of an odd function.

Corollary 3.6.3 Any even/odd smooth 2π-periodic function can be expanded in Fourier se-
ries in cosines/sines:

f(x) =
a0

2
+
∑
n≥1

an cosnx, an =
2
π

∫ π

0
f(x) cosnx dx, f(x) is even (3.6.3)

f(x) =
∑
n≥1

bn sinnx, bn =
2
π

∫ π

0
f(x) sinnx dx, f(x) is odd. (3.6.4)
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Proof: Let us consider the case of an odd function. In this case we have c−n = −cn, and, in
particular, c0 = 0, so we rewrite the Fourier series in the following form

f(x) =
∑
n≥1

cne
inx +

∑
n≤−1

cne
inx

=
∑
n≥1

cn
(
einx − e−inx

)
= 2i

∑
n≥1

cn sinnx.

Denote
bn = 2icn, n ≥ 1.

For this coefficient we obtain

bn =
2i
2π

∫ π

−π
f(x)e−inxdx =

i

π

∫ π

0
f(x)e−inxdx+

i

π

∫ 0

−π
f(x)e−inxdx.

In the second integral we change the integration variable x 7→ −x and use that f(−x) = −f(x)
to arrive at

bn =
i

π

∫ π

0
f(x)e−inxdx+

i

π

∫ 0

π
f(x)einxdx =

i

π

∫ π

0
f(x)

[
e−inx − einx

]
dx =

2
π

∫ π

0
f(x) sinnx dx.

Let us return to the solution to the wave equation on the interval [0, l] with the fixed
endpoints boundary condition. Summarizing the previous considerations we arrive at the
following

Theorem 3.6.4 Let φ(x) ∈ C3([0, l]), ψ(x) ∈ C2([0, l]) be two arbitrary functions. Then the
solutions to the mixed problem (3.6.1), (3.6.2) for the wave equation is written in the form

u(x, t) =
∑
n≥1

sin
πnx

l

(
bn cos

πant

l
+ ḃn sin

πant

l

)
(3.6.5)

bn =
2
l

∫ l

0
φ(x) sin

πnx

l
dx, ḃn =

2
πan

∫ l

0
ψ(x) sin

πnx

l
dx.

Particular solutions to the wave equation giving a basis in the space of all solutions
satisfying the boundary conditions (3.6.1) have the form

u(1)
n (x, t) = sin

πnx

l
cos

πant

l
, u(2)

n (x, t) = sin
πnx

l
sin

πant

l
, n = 1, 2, . . . (3.6.6)

are called standing waves. Observe that these solutions have the separated form (3.5.39).
The shape of these waves essentially does not change in time, only the size does change. In
particular the location of the nodes

xk = k
l

n
, k = 0, 1, . . . , n (3.6.7)

of the n-th solution u(1)
n (x, t) or u(2)

n (x, t) does not depend on time. The n-th standing waves
(3.6.6) have (n + 1) nodes on the string. The solution takes zero values at the nodes at all
times.
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3.7 Energy of vibrating string

Let us consider the vibrating string with fixed points x = 0 and x = l. It is clear that the
kinetic energy of the string at the moment t is equal to

K =
1
2

∫ l

0
ρ u2

t (x, t) dx. (3.7.1)

Let us now compute the potential energy U of the string. By definition U is equal to the
work done by the elastic force moving the string from the equilibrium u ≡ 0 to the actual
position given by the graph u(x). The motion can be described by the one-parameter family
of curves

v(x; s) = s u(x) (3.7.2)

where the parameter s changes from s = 0 (the equilibrium) to s = 1 (the position of the
string). As we already know the vertical component of the force acting on the interval of the
string (3.7.2) between x and x+ ∆x is equal to

F = T (vx(x+ ∆x; s)− vx(x; s)) ' s T uxx(x) ∆x.

The work A to move the string from the position v(x; s) to v(x; s+ ∆s) is therefore equal to

A = −F · [v(x; s+ ∆s)− v(x; s)] ' −s T uxx(x)u(x)∆x∆s

(the negative sign since the direction of the force is opposite to the direction of the dis-
placement). The total work of the elastic forces for moving the string of length l from the
equilibrium s = 0 to the given configuration at s = 1 is obtained by integration:

U = −
∫ 1

0
ds

∫ l

0
s T uxx(x)u(x) dx = −1

2

∫ l

0
T uxx(x)u(x) dx.

By definition this work is equal to the potential energy of the string. Integrating by parts
and using the boundary conditions

u(0) = u(l) = 0

we finally arrive at the following expression for the potential energy:

U =
1
2

∫ l

0
T u2

x(x) dx. (3.7.3)

Summarizing (3.7.1) and (3.7.3) gives the formula for the total energy E = E(t) of the
vibrating string at the moment t

E = K + U =
∫ l

0

(
1
2
ρ u2

t (x, t) +
1
2
T u2

x(x, t)
)
dx. (3.7.4)

Exercise 3.7.1 Prove that the same expression (3.7.3) holds true for the total work of elastic
forces moving the string from the equilibrium to the given position u(x) along an arbitrary
path v(x; s)

v(x; 0) ≡ 0, v(x; 1) = u(x)
v(0; s) = v(l; s) = 0

in the space of configurations.

It is understood that v(x; t) is a smooth function on [0, l]× [0, 1].
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We will now prove that the total energy E of vibrating string with fixed end points does
not depend on time.

Lemma 3.7.2 Let the function u(x, t) satisfy the wave equation. Then the following identity
holds true

∂

∂t

(
1
2
ρ u2

t (x, t) +
1
2
T u2

x(x, t)
)

=
∂

∂x
(T uxut) . (3.7.5)

Proof: A straightforward differentiation using utt = a2uxx yields

∂

∂t

(
1
2
ρ u2

t (x, t) +
1
2
T u2

x(x, t)
)

= ρ a2utuxx + T uxuxt.

Since
a2 =

T

ρ

(see above) we rewrite the last equation in the form

= T (utuxx + utxux) = T (utux)x .

Corollary 3.7.3 Denote E[a,b](t) the energy of a segment of vibrating string

E[a,b](t) =
∫ b

a

(
1
2
ρ u2

t (x, t) +
1
2
T u2

x(x, t)
)
dx. (3.7.6)

The following formula describes the dependence of this energy on time:

d

dt
E[a,b](t) = T utux|x=b − T utux|x=a. (3.7.7)

Remark 3.7.4 In physics literature the quantity

1
2
ρ u2

t (x, t) +
1
2
T u2

x(x, t) (3.7.8)

is called energy density. It is equal to the energy of a small piece of the string from x to
x+ dx at the moment t. The total energy of a piece of a string is obtained by integration of
this density in x. Another important notion is the flux density

−T utux. (3.7.9)

The formula (3.7.7) says that the change of the energy of a given piece of the string for the
time dt is given by the total flux through the boundary of the piece.

Finally we arrive at the conservation law of the total energy of a vibrating string with
fixed end points.
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Theorem 3.7.5 The total energy (3.7.4) of the vibrating string with fixed end points does
not depend on t:

d

dt
E = 0.

Proof: The formula (3.7.7) for the particular case a = 0, b = l gives

d

dt
E = T (ut(l, t)ux(l, t)− ut(0, t)ux(0, t)) = 0

since
ut(0, t) = ∂tu(0, t) = 0, ut(l, t) = ∂tu(l, t) = 0

due to the boundary conditions u(0, t) = u(l, t) = 0.

The conservation law of total energy makes it evident that the vibrating string is a
conservative system.

Exercise 3.7.6 Derive the formula for the total energy and prove the conservation law for
a vibrating string of finite length with free boundary conditions ux(0, t) = ux(l, t) = 0.

Exercise 3.7.7 Prove that the energy of the vibrating string represented as sum (3.6.5) of
standing waves (3.6.6) is equal to the sum of energies of standing waves.

The conservation of total energy can be used for proving uniqueness of solution for the
wave equation. Indeed, if u(1)(x, t) and u(2)(x, t) are two solutions vanishing at x = 0 and
x = l with the same initial data. The difference

u(x, t) = u(2)(x, t)− u(1)(x, t)

solves wave equation, satisfies the same boundary conditions and has zero initial data u(x, 0) =
φ(x) = 0, ut(x, 0) = ψ(x) = 0. The conservation of energy for this solution gives

E(t) =
∫ l

0

(
1
2
ρ u2

t (x, t) +
1
2
T u2

x(x, t)
)
dx = E(0) =

∫ l

0

(
1
2
ρψ2(x) +

1
2
T φ2

x(x)
)
dx = 0.

Hence ux(x, t) = ut(x, t) = 0 for all x, t. Using the boundary conditions one concludes that
u(x, t) ≡ 0,

3.8 Exercises to Section 3

Exercise 3.8.1 For few instants of time t ≥ 0 make a graph of the solution u(x, t) to the
wave equation with the initial data

u(x, 0) = 0, ut(x, 0) =
{

1, x ∈ [x0, x1]
0 otherwise

, −∞ < x <∞.
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Exercise 3.8.2 Let the initial data u(x, 0) = φ(x), ut(x, 0) = ψ(x) of the Cauchy problem
for the wave equation on −∞ < x <∞ have the following form: the graph of φ(x) consists of
two isosceles triangles with the non-overlapping bases [α1, β1] and [α2, β2] (i.e., β1 < α2) of
the heights h1 and h2 respectively, and ψ(x) ≡ 0. Denote u(x, t) the solution to the problem.
Find

max
x∈R, t>0

u(x, t).

Compare this number with
max

x∈R, t≥0
u(x, t).

Exercise 3.8.3 For few instants of time t ≥ 0 make a graph of the solution u(x, t) to the
wave equation on the half line x ≥ 0 with the free boundary condition

ux(0, t) = 0

and with the initial data

u(x, 0) = φ(x), ut(x, 0) = 0, x > 0

where the graph of the function φ(x) is an isosceles triangle of height 1 and the base [l, 3l].

Exercise 3.8.4 For few instants of time t ≥ 0 make a graph of the solution u(x, t) to the
wave equation on the half line x ≥ 0 with the fixed point boundary condition

u(0, t) = 0

and with the initial data

u(x, 0) = 0, ut(x, 0) =
{

1, x ∈ [l, 3l]
0, otherwise

, x > 0.

Exercise 3.8.5 Prove that
∞∑
n=1

sinnx
n

=
π − x

2
for 0 < x < 2π.

Compute the sum of the Fourier series for all other values of x ∈ R.

Exercise 3.8.6 Compute the sums of the following Fourier series:

∞∑
n=1

sin 2nx
2n

, 0 < x < π;

∞∑
n=1

(−1)n

n
sinnx, |x| < π.

Exercise 3.8.7 Prove that

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx, |x| < π.
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Exercise 3.8.8 Compute the sums of the following Fourier series:

∞∑
n=1

cos(2n− 1)x
(2n− 1)2

∞∑
n=1

cosnx
n2

.

Exercise 3.8.9 Denote

Sn(x) =
4
π

n∑
k=1

sin(2k − 1)x
2k − 1

the n-th partial sum of the Fourier series (3.5.35). Prove that

1) for any x ∈ (−π, π)
lim
n→∞

Sn(x) = signx.

Hint: derive the following expression for the derivative

S′n(x) =
2
π

sin 2nx
sinx

.

2) Verify that the n-th partial sum has a maximum at

xn =
π

2n
.

3) Prove that

Sn(xn) =
2
π

n∑
k=1

π

n
·

sin (2k−1)π
2n

(2k−1)π
2n

→ 2
π

∫ π

0

sinx
x

dx ' 1.17898

for n→∞.

Thus for the trigonometric series (3.5.35)

lim sup
n→∞

Sn(x) > 1 for x > 0.

In a similar way one can prove that

lim inf
n→∞

Sn(x) < −1 for x < 0.

Exercise 3.8.10 Prove conservation of the quantity

P (t) =
∫ l

0
ρ ut(x, t)ux(x, t) dx, (3.8.1)

P (t) = P (0) for vibrating string with fixed end points.

This quantity can be interpreted as the total momentum of vibrating string.
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4 Laplace equation

4.1 Ill-posedness of Cauchy problem for Laplace equation

In the study of various classes of solutions to the Cauchy problem for the wave equation we
were able to establish

• existence of the solution in a suitable class of functions;

• uniqueness of the solution;

• continuous dependence of the solution on the initial data (see Exercise 3.2.2 above) with
respect to a suitable topology.

One may ask whether these properties remain valid for all evolutionary PDEs satisfying
conditions of the Cauchy – Kovalevskaya theorem?

Let us consider a counterexample found by J.Hadamard (1922). Changing the sign in the
wave equation one arrives at an equation of elliptic type

utt + a2uxx = 0. (4.1.1)

(The equation (4.1.1) is usually called Laplace equation.) Does the change of the type of
equation affect seriously the properties of solutions?

To be more specific we will deal with the periodic Cauchy problem

u(x, 0) = φ(x), ut(x, 0) = ψ(x) (4.1.2)

with two 2π-periodic smooth initial functions φ(x), ψ(x). For simplicity let us choose a = 1.
We will see that the solution to this Cauchy problem does not depend continuously on the
initial data. To do this let us consider the following sequence of initial data: for any integer
k > 0 denote uk(x, t) solution to the Cauchy problem

u(x, 0) = 0, ut(x, 0) =
sin k x
k

. (4.1.3)

The 2π-periodic solution can be expanded in Fourier series

uk(x, t) =
a0(t)

2
+
∞∑
n=1

[an(t) cosnx+ bn(t) sinnx]

with some coefficients an(t), bn(t). Substituting the series into equation

utt + uxx = 0

we obtain an infinite system of ODEs

än = n2an

b̈n = n2bn,

n = 0, 1, 2, . . . . The initial data for this infinite system of ODEs follow from the Cauchy
problem (4.1.3):

an(0) = 0, ȧn(0) = 0 ∀n,

bn(0) = 0, ḃn(0) =
{

1/k, n = k
0, n 6= k.
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The solution has the form

an(t) = 0 ∀n, bn(t) = 0 ∀n 6= k

bk(t) =
1
k2

sinh kt.

So the solution to the Cauchy problem (4.1.2) reads

uk(x, t) =
1
k2

sin kx sinh kt. (4.1.4)

Using this explicit solution we can prove the following

Theorem 4.1.1 For any positive ε, M , t0 there exists an integer K such that for any k ≥ K
the initial data (4.1.3) satisfy

sup
x∈[0,2π]

(|uk(x, 0)|+ |∂tuk(x, 0)|) < ε (4.1.5)

but the solution uk(x, t) at the moment t = t0 > 0 satisfies

sup
x∈[0,2π]

(|uk(x, t0)|+ |∂tuk(x, t0)|) ≥M. (4.1.6)

Proof: Choosing an integer K1 satisfying

K1 >
1
ε

we will have the inequality (4.1.5) for any k ≥ K1. In order to obtain a lower estimate of the
form (4.1.6) let us first observe that

sup
x∈[0,2π]

(|uk(x, t)|+ |∂tuk(x, t)|) =
1
k2

sinh kt+
1
k

cosh kt >
ekt

k2

where we have used an obvious inequality

1
k
>

1
k2

for k > 1.

The function
y =

ex

x2

is monotone increasing for x > 2 and

lim
x→+∞

ex

x2
= +∞.

Hence for any t0 > 0 there exists x0 such that

ex

x2
>
M

t20
for x > x0.

48



Let K2 be a positive integer satisfying

K2 >
x0

t0
.

Then for any k > K2

ek t0

k2
= t20

ek t0

(k t0)2
> t20

ex0

x2
0

> M.

Choosing
K = max(K1,K2)

we complete the proof of the Theorem.

The statement of the Theorem is usually referred to as ill-posedness of the Cauchy problem
(4.1.1), (4.1.2).

A natural question arises: what kind of initial or boundary conditions can be chosen
in order to uniquely specify solutions to Laplace equation without violating the continuous
dependence of the solutions on the boundary/initial conditions?

4.2 Dirichlet and Neumann problems for Laplace equation on the plane

The Laplace operator in the d-dimensional Euclidean space is defined by

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

. (4.2.1)

The symbol (coinciding with the principal symbol) of this operator is equal to

−
(
ξ2

1 + · · ·+ ξ2
d

)
< 0 for all ξ 6= 0.

So Laplace operator is an example of an elliptic operator.

In this section we will formulate the two main boundary value problems (b.v.p.’s) for the
Laplace equation

∆u = 0, u = u(x), (x) ∈ Ω ⊂ Rd. (4.2.2)

The solutions to the Laplace equation are called harmonic functions in the domain Ω.

We will assume that the boundary ∂Ω of the domain Ω is a smooth hypersurface. Moreover
we assume that the domain Ω does not go to infinity, i.e., Ω belongs to some ball in Rd. Denote
n = n(x) the unit external normal vector at every point x ∈ ∂Ω of the boundary.

Problem 1 (Dirichlet problem). Given a function f(x) defined at the points of the
boundary find a function u = u(x) satisfying the Laplace equation on the internal part of the
domain Ω and the boundary condition

u(x)|x∈∂Ω = f(x) (4.2.3)

on the boundary of the domain.
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Problem 2 (Neumann problem). Given a function g(x) defined at the points of the
boundary find a function u = u(x) satisfying the Laplace equation on the internal part of the
domain Ω and the boundary condition(

∂u(x)
∂n

)
x∈∂Ω

= g(x) (4.2.4)

on the boundary of the domain.

The normal derivative in this equation is defined as follows. Let α1, . . . , αd be the angles
between the coordinate axes and the unit normal vector n. Then

∂u(x)
∂n

= cosα1
∂u

∂x1
+ · · ·+ cosαd

∂u

∂xd
. (4.2.5)

Example 1. For d = 1 the Laplace operator is just the second derivative

∆ =
d2

dx2
.

The Dirichlet b.v.p. in the domain Ω = (a, b)

u′′(x) = 0, u(a) = fa, u(b) = fb

has an obvious unique solution

u(x) =
fb − fa
b− a

(x− a) + fa.

The Neumann b.v.p. in the same domain

u′′(x) = 0, −u′(a) = ga, u′(b) = gb

has solution only if
ga + gb = 0. (4.2.6)

Example 2. In two dimensions the Laplace operator reads.

∆ =
∂2

∂x2
+

∂2

∂y2
. (4.2.7)

Exercise 4.2.1 Prove that in the polar coordinates

x = r cosφ
y = r sinφ

}
(4.2.8)

the Laplace operator takes the form

∆ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
. (4.2.9)
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In the particular case
Ω = {(x, y) |x2 + y2 < ρ2} (4.2.10)

(a circle of radius ρ) the Dirichlet b.v.p. is formulated as follows: find a solution to the
Laplace equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0, u = u(x, y), for x2 + y2 < ρ2 (4.2.11)

satisfying the boundary condition
u |r=ρ = f(φ). (4.2.12)

Here we represent the boundary condition defined on the boundary of the circle as a function
depending only on the polar angle φ. Similarly, the Neumann problem consists of finding a
solution to the Laplace equation satisfying(

∂u

∂r

)
r=ρ

= g(φ) (4.2.13)

for a given function g(φ). Indeed, the partial derivative

∂u

∂r
= cosφ

∂u

∂x
+ sinφ

∂u

∂y

coincides with the normal derivative (see the formula (4.2.5)).

Let us return to the general d-dimensional case. The following identity will be useful in
the study of harmonic functions.

Theorem (Green’s formula). For arbitrary smooth functions u, v on the closed domain
Ω̄ with a piecewise smooth boundary ∂Ω the following identity holds true∫

Ω
∇u · ∇v dV +

∫
Ω
u∆v dV =

∫
∂Ω
u
∂v

∂n
dS. (4.2.14)

Here

∇u · ∇v =
d∑
i=1

∂u

∂xi

∂v

∂xi

is the inner product of the gradients of the functions,

dV = dx1 . . . dxd

is the Euclidean volume element, n the external normal and dS is the area element on the
hypersurface ∂Ω.

Example 1. For d = 1 and Ω = (a, b) the Green’s formula reads∫ b

a
ux vx dx+

∫ b

a
u vxx dx = u vx|ba

since the oriented boundary of the interval consists of two points ∂[a, b] = b − a. This is an
easy consequence of integration by parts.
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Example 2. For d = 2 and a rectangle Ω = (a, b)× (c, d) the Green’s formula becomes∫
Ω

(uxvx + uyvy) dx dy +
∫

Ω
u (vxx + vyy) dx dy =

∫ b

a
(u vy)

d
c dx+

∫ d

c
(u vx)ba dy

(the sum of integrals over four pieces of the boundary ∂Ω stands in the right hand side of
the formula).

Let us return to the general discussion of Laplace equation. The following corollary follows
immediately from the Green’s formula.

Corollary 4.2.2 For a function u harmonic in a domain Ω with a piecewise smooth boundary
the following identity holds true ∫

Ω
(∇u)2 =

∫
∂Ω

1
2
∂nu

2 dS. (4.2.15)

Proof: This is obtained from (4.2.14) by choosing u = v.

Using this identity we can easily derive uniqueness of solution to the Dirichlet problem.

Theorem 4.2.3 1) Let u1, u2 be two functions harmonic in the domain Ω and smooth in
the closed domain Ω̄ coinciding on the boundary ∂Ω. Then u1 ≡ u2.

2) Under the same assumptions about the functions u1, u2, if the normal derivatives on
the boundary coincide

∂u1

∂n
=
∂u2

∂n

then the functions differ by a constant.

Proof: Applying to the difference u = u2 − u1 the identity (4.2.15) one obtains∫
Ω

(∇u)2dV = 0

since the right hand side vanishes. Hence ∇u = 0, and thus the function u is equal to a
constant. The value of this constant on the boundary is zero. Therefore u ≡ 0. The second
statement has a similar proof.

The following counterexample shows that the uniqueness does not hold true for infinite
domains. Let Ω be the upper half plane:

Ω = {(x, y) ∈ R2 | y > 0.}.

The linear function u(x, y) = y is harmonic in Ω and vanishes on the boundary. Clearly u 6= 0
on Ω.

Our goal is to solve the Dirichlet and Neumann boundary value problems. The first result
in this direction is the following
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Theorem 4.2.4 For an arbitrary C1-smooth 2π-periodic function f(φ) the solution to the
Dirichlet b.v.p. (4.2.11), (4.2.12) exists and is unique. Moreover it is given by the following
formula

u(r, φ) =
1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρ r cos(φ− ψ) + r2
f(ψ) dψ. (4.2.16)

The expression (4.2.16) for the solution to the Dirichlet b.v.p. in the circle is called
Poisson formula.

Proof: We will first use the method of separation of variables in order to construct particular
solutions to the Laplace equation. At the second step we will represent solutions to the
Dirichlet b.v.p. as a linear combination of the particular solutions.

The method of separation of variables starts from looking for solutions to the Laplace
equation in the form

u = R(r)Φ(φ). (4.2.17)

Here r, φ are the polar coordinates on the plane (see Exercise 4.2.1 above). Using the form
(4.2.9) we reduce the Laplace equation ∆u = 0 to

R′′(r)Φ(φ) +
1
r
R′(r)Φ(φ) +

1
r2
R(r)Φ′′(φ) = 0.

After division by 1
r2
R(r)Φ(φ) we can rewrite the last equation in the form

R′′(r) + 1
rR
′(r)

1
r2
R(r)

= −Φ′′(φ)
Φ(φ)

.

The left hand side of this equation depends on r while the right hand side depends on φ. The
equality is possible only if both sides are equal to some constant λ. In this way we arrive at
two ODEs for the functions R = R(r) and Φ = Φ(φ)

R′′ +
1
r
R′ − λ

r2
R = 0 (4.2.18)

Φ′′ + λΦ = 0. (4.2.19)

We have now to determine the admissible values of the parameter λ. To this end let us begin
from the second equation (4.2.19). Its solutions have the form

Φ(φ) =

 Ae
√
−λφ +B e−

√
−λφ, λ < 0

A+B φ, λ = 0
A cos

√
λφ+B sin

√
λφ, λ > 0

.

Since the pairs of polar coordinates (r, φ) and (r, φ+2π) correspond to the same point on the
Euclidean plane the solution Φ(φ) must be a 2π-periodic function. Hence we must discard
the negative values of λ. Moreover λ must have the form

λ = n2, n = 0, 1, 2, . . . . (4.2.20)

This gives
Φ(φ) = A cosnφ+B sinnφ. (4.2.21)
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The first ODE (4.2.18) for λ = n2 becomes

R′′ +
1
r
R′ − n2

r2
R = 0.

This is a particular case of Euler equation. One can look for solutions in the form

R(r) = rk.

The exponent k has to be determined from the characteristic equation

k(k − 1) + k − n2 = 0

obtained by the direct substitution of R = rk into the equation. The roots of the characteristic
equation are k = ±n. For n > 0 this gives the general solution of the equation (4.2.18) in
the form

R = a rn +
b

rn

with two integration constants a and b. For n = 0 the general solution is

R = a+ b log r.

As the solution must be smooth at r = 0 one must always choose b = 0 for all n. In this way
we arrive at the following family of particular solutions to the Laplace equation

un = rn (an cosnφ+ bn sinnφ) , n = 0, 1, 2, . . . (4.2.22)

We want now to represent any solution to the Dirichlet b.v.p. in the circle of radius ρ as a
linear combination of these solutions:

u =
A0

2
+
∑
n≥1

rn (An cosnφ+Bn sinnφ)

(4.2.23)
u|r=ρ = f(φ).

The boundary data function f(φ) must be a 2π-periodic function. Assuming this function to
be C1-smooth let us expand it in Fourier series

f(φ) =
a0

2
+
∑
n≥1

(an cosnφ+ bn sinnφ)

an =
1
π

∫ 2π

0
f(φ) cosnφdφ, bn =

1
π

∫ 2π

0
f(φ) sinnφdφ. (4.2.24)

Comparison of (4.2.23) with (4.2.24) yields

An =
an
ρn
, Bn =

bn
ρn
,

or, equivalently

u =
a0

2
+
∑
n≥1

(
r

ρ

)n
(an cosnφ+ bn sinnφ) . (4.2.25)
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Recall that this formula holds true on the circle of radius ρ, i.e., for

r ≤ ρ.

The last formula can be rewritten as follows:

u =
1
π

∫ 2π

0

1
2

+
∑
n≥1

(
r

ρ

)n
(cosnφ cosnψ + sinnφ sinnψ)

 f(ψ) dψ

=
1
π

∫ 2π

0

1
2

+
∑
n≥1

(
r

ρ

)n
cosn(φ− ψ)

 f(ψ) dψ.

To compute the sum in the square bracket we represent it as a geometric series converging
for r < ρ:

1
2

+
∑
n≥1

(
r

ρ

)n
cosn(φ− ψ) =

1
2

+ Re
∑
n≥1

(
r

ρ

)n
ein(φ−ψ)

=
1
2

+ Re
r ei(φ−ψ)

ρ− r ei (φ−ψ)
=

1
2

+
1
2

(
r ei(φ−ψ)

ρ− r ei (φ−ψ)
+

r e−i(φ−ψ)

ρ− r e−i (φ−ψ)

)

=
1
2

ρ2 − r2

ρ2 − 2ρ r cos(φ− ψ) + r2
.

In a similar way one can treat the Neumann boundary problem. However in this case one
has to impose an additional constraint for the boundary value of the normal derivative (cf.
(4.2.6) above in dimension 1).

Lemma 4.2.5 Let v be a smooth function on the closed domain Ω̄ harmonic inside the
domain. Then the integral of the normal derivative of v over the boundary ∂Ω vanishes:∫

∂Ω

∂v

∂n
dS = 0. (4.2.26)

Proof: Applying the Green formula to the pair of functions u ≡ 1 and v one obtains∫
Ω

∆v dV =
∫
∂Ω

∂v

∂n
dS.

The left hand side of the equation vanishes since ∆v = 0 in Ω.

Corollary 4.2.6 The Neumann problem (4.2.4) can have a solution only if the boundary
function g satisfies ∫

∂Ω
g dS = 0. (4.2.27)

We will now prove, for the particular case of a circle domain in the dimension d = 2 that
this necessary condition of solvability is also a sufficient one.
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Theorem 4.2.7 For an arbitrary C1-smooth 2π-periodic function g(φ) satisfying∫ 2π

0
g(φ) dφ = 0 (4.2.28)

the Neumann b.v.p. (4.2.11), (4.2.4) has a solution unique up to an additive constant. This
solution can be represented by the following integral formula

u(r, φ) =
ρ

2π

∫ 2π

0
log

ρ2

ρ2 − 2ρ r cos(φ− ψ) + r2
g(ψ) dψ. (4.2.29)

Proof: Repeating the above arguments one arrives at the following expression for the solution
u = u(r, φ):

u =
A0

2
+
∑
n≥1

rn (An cosnφ+Bn sinnφ)

(4.2.30)(
∂u

∂r

)
r=ρ

= g(φ).

Let us consider the Fourier series of the function g(φ)

g(φ) =
a0

2
+
∑
n≥1

(an cosnφ+ bn sinnφ) .

Due to the constraint (4.2.28) the constant term vanishes:

a0 = 0.

Comparing this series with the boundary condition (4.2.30) we find that

u(r, φ) =
A0

2
+ ρ

∑
n≥1

1
n

(
r

ρ

)n
(an cosnφ+ bn sinnφ)

an =
1
π

∫ 2π

0
cosnψ g(ψ) dψ, bn =

1
π

∫ 2π

0
sinnψ g(ψ) dψ.

Here A0 is an arbitrary constant. Combining the two last equations we arrive at the following
expression:

u(r, φ) =
ρ

π

∫ 2π

0

∑
n≥1

1
n

(
r

ρ

)n
cosn(φ− ψ)g(ψ) dψ. (4.2.31)

It remains to compute the sum of the trigonometric series in the last formula.

Lemma 4.2.8 Let R and θ be two real numbers, R < 1. Then

∞∑
n=1

1
n
Rn cosnθ =

1
2

log
1

1− 2R cos θ +R2
. (4.2.32)
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Proof: The series under consideration can be represented as the real part of a complex series

∞∑
n=1

1
n
Rn cosnθ = Re

∞∑
n=1

1
n
Rneinθ.

The latter can be written as follows:
∞∑
n=1

1
n
Rneinθ =

∫ R

0

∞∑
n=1

1
R
Rneinθ dR.

We can easily compute the sum of the geometric series with the denominator Reiθ. Integrating
we obtain

∞∑
n=1

1
n
Rneinθ =

∫ R

0

eiθ

1−Reiθ
dR = − log

(
1−Reiθ

)
.

Hence
∞∑
n=1

1
n
Rn cosnθ =

1
2

[
log

1
1−Reiθ

+ log
1

1−Re−iθ

]
=

1
2

log
1

1− 2R cos θ +R2
.

Applying the formula of the Lemma to the series (4.2.31) we complete the proof of the
Theorem.

4.3 Properties of harmonic functions: mean value theorem, the maximum
principle

In this section we will establish, for the specific case of dimension d = 2, the two fundamental
properties of harmonic functions.

Let Ω ⊂ Rd be a domain. Recall that a point x0 ∈ Ω is called internal if there exists a
ball of some radius R > 0 with the centre at x0 entirely belonging to Ω. For an internal point
x0 ∈ Ω denote

Sd−1(x0, R) = {x ∈ Rd | |x− x0| = R}

a sphere of radius R > 0 with the center at x0. The radius is chosen small enough to guarantee
that the sphere belongs to the domain Ω. Denote ad−1 the area7 of the unit sphere in Rd.
For any continuous function f(x) on the sphere the mean value is defined by the formula

f̄ =
1

ad−1Rd−1

∫
Sd−1(x0,R)

f(x) dS. (4.3.2)

In the particular case of a constant function the mean value coincides with the value of the
function.

7The area of the (d− 1)-dimensional sphere of radius 1 in the Euclidean space is given by the formula

ad−1 = d · πd/2

Γ
`
d
2

+ 1
´ . (4.3.1)

Clearly the area of a sphere of radius R is equal to ad−1R
d−1.

57



For example, in dimension d = 1 the “sphere” consists of two points x0±R. The formula
(4.3.1) for the area of the zero-dimensional sphere gives

a0 =
π1/2

Γ
(

3
2

) = 2.

So the mean value of a function is just the arithmetic mean value of the two numbers f(x0±R):

f̄ =
f(x0 +R) + f(x0 −R)

2
.

In the next case d = 2 the sphere is just a circle of radius R with the centre at x0. The area
(i.e., the length) element is dS = Rdφ. The restriction of f to the circle is a 2π-periodic
function f(φ). So the mean value on this circle is given by

f̄ =
1

2π

∫ 2π

0
f(φ) dφ.

Theorem 4.3.1 Let u = u(x) be a function harmonic in a domain Ω. Then the mean value
of u over a small sphere centered at a point x0 ∈ Ω is equal to the value of the function at
this point:

u(x0) =
1

ad−1Rd−1

∫
Sd−1(x0,R)

u(x) dS. (4.3.3)

Proof for d = 2. Denote f(φ) the restriction of the harmonic function u onto the small
circle |x − x0| = R. By definition the function u(x) satisfies the Dirichlet b.v.p. inside the
circle:

∆u(x) = 0, |x− x0| < R

u(x)||x−x0|=R = f(φ).

As we already know from the proof of Theorem 4.2.4 the solution to this b.v.p. can be
represented by the Fourier series

u(r, φ) =
a0

2
+
∑
n≥1

( r
R

)n
(an cosnφ+ bn sinnφ) (4.3.4)

for r := |x−x0| < R (cf. (4.2.25) above). In this formula an and bn are the Fourier coefficients
of the boundary function

f(φ) = u(x)||x−x0|=R.

In particular
a0

2
=

1
2π

∫ 2π

0
f(φ) dφ

is the mean value of the function u on the circle. On the other side the value of the function
u at the center of the circle can be evaluated substituting r = 0 in the formula (4.3.4):

u(x0) =
a0

2
.

Comparing the last two equations we arrive at (4.3.3).
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Using the mean value theorem we will now prove another important property of harmonic
functions, namely the maximum principle. Recall that a function u(x) defined on a domain
Ω ⊂ Rd is said to have a local maximum at the point x0 if the inequality

u(x) ≤ u(x0) (4.3.5)

holds true for any x ∈ Ω sufficiently close to x0. A local minimum is defined in a similar way.

Theorem 4.3.2 Let a function u(x) be harmonic in a bounded connected domain Ω and
continuous in a closed domain Ω̄. Denote

M = sup
x∈∂Ω

u(x), m = inf
x∈∂Ω

u(x).

Then

1) m ≤ u(x) ≤M for all x ∈ Ω;

2) if u(x) = M or u(x) = m for some internal point x ∈ Ω then the function u is constant.

Proof: It is based on the following Main Lemma.

Lemma 4.3.3 Let the harmonic function u(x) have a local maximum/minimum at an in-
ternal point x0 ∈ Ω. Then u(x) ≡ u(x0) on some neighborhood of the point x0.

Proof: Let us consider the case of a local maximum. Choosing a sufficiently small sphere
with the centre at x0 we obtain, according to the mean value theorem, that

u(x0) =
1

ad−1Rd−1

∫
|x−x0|=R

u(x) dS.

We can assume the inequality (4.3.5) holds true for all x on the sphere. So

u(x0) =
1

ad−1Rd−1

∫
|x−x0|=R

u(x) dS ≤ 1
ad−1Rd−1

∫
|x−x0|=R

u(x0) dS = u(x0). (4.3.6)

If there exists a point x sufficiently close to x0 such that u(x) < u(x0) then also the inequality
(4.3.6) is strict. Such a contradiction shows that the function u(x) takes constant values on
some ball with the centre at x0. The case of a local minimum can be treated in a similar
way.

Let us return to the proof of the Theorem. Denote

M ′ = sup
x∈Ω̄

u(x)

the maximum of the function u continuous on the compact Ω̄. We want to prove thatM ′ ≤M .
Indeed, if M ′ > M then there exists an internal point x0 ∈ Ω such that u(x0) = M ′. Denote
Ω′ ⊂ Ω the set of points x of the domain where the function u takes the same value M ′.
According to the Main Lemma this subset is open. Clearly it is also closed and nonempty.
Hence Ω′ = Ω since the domain is connect. In other words the function is constant everywhere
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in Ω. Because of continuity it takes the same value M ′ at the points of the boundary ∂Ω.
Hence M ′ ≤M . The contradiction we arrived at shows that the value of a harmonic function
at an internal point of the domain cannot be bigger than the value of this function on the
boundary of the domain. Moreover if the harmonic function takes the value M at an internal
point then it is constant. In a similar way we prove that a non-constant harmonic function
cannot have a minimum outside the boundary of the domain.

Corollary 4.3.4 Given two functions u1(x), u2(x) harmonic in a bounded domain Ω and
continuous in the closed domain Ω̄. If

|u1(x)− u2(x)| ≤ ε for x ∈ ∂Ω

then
|u1(x)− u2(x)| ≤ ε for any x ∈ Ω

Proof: Denote
u(x) = u1(x)− u2(x).

The function u is harmonic in Ω and continuous in Ω̄. By assumption we have −ε ≤ u(x) ≤ ε
for any x ∈ ∂Ω. So

−ε ≤ inf
x∈∂Ω

u(x), sup
x∈∂Ω

u(x) ≤ ε.

According to the maximum principle it must be also

−ε ≤ inf
x∈Ω

u(x), sup
x∈Ω

u(x) ≤ ε.

The Corollary implies that the solution to the Dirichlet boundary value problem, if exists,
depends continuously on the boundary data.

4.4 Harmonic functions on the plane and complex analysis

Recall that a differentiable complex valued function f(x, y) = u(x, y) + iv(x, y) on a domain
in R2 is called holomorphic if it satisfies the following system of Cauchy – Riemann equations

∂u
∂x −

∂v
∂y = 0

∂v
∂x + ∂u

∂y = 0

 (4.4.1)

or, in the complex form
∂f

∂x
+ i

∂f

∂y
= 0. (4.4.2)

Introducing complex combinations of the Euclidean coordinates

z = x+ iy
z̄ = x− iy
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we will have

∂

∂z
=

1
2

(
∂

∂x
− i ∂

∂y

)
(4.4.3)

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

So the Cauchy – Riemann equations can be rewritten in the form

∂f

∂z̄
= 0. (4.4.4)

Example. Let f(x, y) be a polynomial

f(x, y) =
∑
k,l

aklx
kyl.

It is a holomorphic function iff, after the substitution

x =
z + z̄

2

y =
z − z̄

2i

there will be no dependence on z̄:∑
k,l

akl

(
z + z̄

2

)k (z − z̄
2i

)l
=
∑
m

cmz
m.

In that case the result will be a polynomial in z. For example a quadratic polynomial

f(x, y) = ax2 + 2bxy + cy2

is holomorphic iff a+ c = 0 and b = i
2(a− c).

More generally holomorphic functions are denoted f = f(z). The partial derivative ∂/∂z
of a holomorphic function is denoted df/dz or f ′(z). One can also define antiholomorphic
functions f = f(z̄) satisfying equation

∂f

∂z
= 0. (4.4.5)

Notice that the complex conjugate f(z) to a holomorphic function is an antiholomorphic
function.

From complex analysis it is known that any function f holomorphic on a neighborhood of
a point z0 is also a complex analytic function, i.e., it can be represented as a sum of a power
series

f(z) =
∞∑
n=0

an(z − z0)n (4.4.6)

convergent uniformly and absolutely for sufficiently small |z− z0|. In particular it is continu-
ously differentiable any number of times. Its real and imaginary parts u(x, y) and v(x, y) are
infinitely smooth functions of x and y.
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Theorem 4.4.1 The real and imaginary parts of a function holomorphic in a domain Ω are
harmonic functions on the same domain.

Proof: Differentiating the first equation in (4.4.1) in x and the second one in y and adding
we obtain

∂2u

∂x2
+
∂2u

∂y2
= 0.

Similarly, differentiating the second equation in x and subtracting the first one differentiated
in y gives

∂2v

∂x2
+
∂2v

∂y2
= 0.

Corollary 4.4.2 For any integer n ≥ 1 the functions

Re zn and Im zn (4.4.7)

are polynomial solutions to the Laplace equation.

Polynomial solutions to the Laplace equation are called harmonic polynomials. We obtain
a sequence of harmonic polynomials

x, y, x2 − y2, xy, x3 − 3xy2, 3x2y − y3, . . . .

Observe that the harmonic polynomials of degree n can be represented in the polar coordi-
nates r, φ as

Re zn = rn cosnφ, Im zn = rn sinnφ.

These are exactly the same functions we used to solve the main boundary value problems for
the circle.

Exercise 4.4.3 Prove that the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

in the coordinates z, z̄ becomes

∆ = 4
∂2

∂z∂z̄
. (4.4.8)

Exercise 4.4.4 Prove that any harmonic polynomial is a linear combination of the polyno-
mials (4.4.7).

Using the representation (4.4.8) of the two-dimensional Laplace operator one can describe
all complex valued solutions to the Laplace equation.

Theorem 4.4.5 Any complex valued solution u to the Laplace equation ∆u = 0 on the plane
can be represented as a sum of a holomorphic and an antiholomorphic function:

u(x, y) = f(z) + g(z̄). (4.4.9)
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Proof: Let the C2-smooth function u(x, y) satisfy the Laplace equation

∂2u

∂z∂z̄
= 0.

Denote
F =

∂u

∂z
.

The Laplace equation implies that this function is holomorphic, F = F (z). From complex
analysis it is known that any holomorphic function admits a holomorphic primitive,

F (z) = f ′(z).

Consider the difference g := u− f . It is an antiholomorphic function, g = g(z̄). Indeed,

∂g

∂z
=
∂u

∂z
− f ′ = 0.

So u = f(z) + g(z̄).

Corollary 4.4.6 Any harmonic function of two variables can be represented as the real part
of a holomorphic function.

Notice that the imaginary part of a holomorphic function f(z) is equal to the real part of
the function −i f(z) that is holomorphic as well.

Corollary 4.4.7 Any harmonic function of two variables is C∞-smooth.

Another important consequence of the complex representation (4.4.8) of the Laplace op-
erator on the plane is invariance of the Laplace equation under conformal transformation.
Recall that a smooth map

f : Ω→ Ω′

is called conformal if it preserves the angles between smooth curves. Translations

(x, y) 7→ (x+ x0, y + y0),

dilatations
(x, y) 7→ (k x, k y)

with k 6= 0, rotations by the angle φ

(x, y) 7→ (x cosφ− y sinφ, x sinφ+ y sinφ)

and reflections
(x, y) 7→ (x,−y)

are examples of linear conformal transformations. These examples and their superpositions
exhaust the class of linear conformal maps. The general description of conformal maps on
the plane are given by
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Lemma 4.4.8 Let f(z) be a function holomorphic in the domain Ω with never vanishing
derivative:

df(z)
dz

6= 0 ∀z ∈ Ω.

Then the map
z 7→ f(z)

of the domain Ω to Ω′ = f(Ω) is conformal. Same for antiholomorphic functions. Conversely,
if the smooth map (x, y) 7→ (u(x, y), v(x, y)) is conformal then the function f = u + iv is
holomorphic or antiholomorphic with nonvanishing derivative.

Proof: Let us consider the differential of the map (x, y) 7→ (u(x, y), v(x, y)) given by the real
u = Re f and imaginary v = Im f parts of the holomorphic function f . It is a linear map
defined by the Jacobi matrix ∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

 =

 ∂u/∂x −∂v/∂x

∂v/∂x ∂u/∂x


(we have used the Cauchy – Riemann equations). Since

0 6= |f ′(z)|2 =
(
∂u

∂x

)2

+
(
∂v

∂x

)2

,

we can introduce the numbers r > 0 and φ by

r = |f ′(z)|, cosφ =
∂u/∂x√(

∂u
∂x

)2
+
(
∂v
∂x

)2 , sinφ =
∂v/∂x√(

∂u
∂x

)2
+
(
∂v
∂x

)2 .
The Jacobi matrix then becomes a combination of the rotation by the angle φ and a dilatation
with the coefficient r:  ∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

 = r

 cosφ − sinφ

sinφ cosφ

 .

This is a linear conformal transformation preserving the angles. A similar computation works
for an antiholomorphic map with nonvanishing derivatives f ′(z̄) 6= 0.

Conversely, the Jacobi matrix of a conformal transformation must have the form

r

 cosφ − sinφ

sinφ cosφ


or

r

 cosφ sinφ

sinφ − cosφ

 .

In the first case one obtains the differential of a holomorphic map while the second matrix
corresponds to the antiholomorphic map.

We are ready to prove

64



Theorem 4.4.9 Let
f : Ω→ Ω′

be a conformal map. Then the pull-back of any function harmonic in Ω′ will be harmonic in
Ω.

Proof: According to the Lemma the conformal map is given by a holomorphic or an anti-
holomorphic function. Let us consider the holomorphic case,

z 7→ w = f(z).

The transformation law of the Laplace operator under such a map is clear from the following
formula:

∂2

∂z∂z̄
= |f ′(z)|2 ∂2

∂w∂w̄
. (4.4.10)

Thus any function U on Ω′ satisfying

∂2U

∂w ∂w̄
= 0

will also satisfy
∂2U

∂z ∂z̄
= 0.

The case of an antiholomorphic map can be considered in a similar way.

A conformal map
f : Ω→ Ω′

is called conformal transformation if it is one-to-one. In that case the inverse map

f−1 : Ω′ → Ω

exists and is also conformal. The following fundamental Riemann theorem is the central
result of the theory of conformal transformations on the plane.

Theorem 4.4.10 For any connected and simply connected domain Ω on the plane not coin-
ciding with the plane itself there exists a conformal transformation of Ω to the unit circle.

The Riemann theorem, together with conformal invariance of the Laplace equation gives
a possibility to reduce the main boundary value problems for any connected simply connected
domain to similar problems for the unit circle.

4.5 Exercises to Section 4

Exercise 4.5.1 Find a function u(x, y) satisfying

∆u = x2 − y2

for r < a and the boundary condition u|r=a = 0.
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Exercise 4.5.2 Find a harmonic function on the annular domain

a < r < b

with the boundary conditions

u|r=a = 1,
(
∂u

∂r

)
r=b

= cos2 φ.

Exercise 4.5.3 Find solution u(x, y) to the Dirichlet b.v.p. in the rectangle

0 ≤ x ≤ a, 0 ≤ y ≤ b

satisfying the boundary conditions

u(0, y) = Ay(b− y), u(a, y) = 0

u(x, 0) = B sin
πx

a
, u(x, b) = 0.

Hint: use separation of variables in Euclidean coordinates.

5 Heat equation

5.1 Derivation of heat equation

The heat equation for the function u = u(x, t), x ∈ Rd, t ∈ R>0 reads

∂u

∂t
= a2∆u. (5.1.1)

Here ∆ is the Laplace operator in Rd. We will consider only the case of constant coeffi-
cients a = const. For d = 3 this equation describes the distribution of temperature in the
homogeneous and isotropic media at the moment t.

The derivation of heat equation is based on the following assumptions.

1. The heat Q necessary for changing from u1 to u2 the temperature of a piece of mass
m is proportional to the mass and to the difference of temperatures:

Q = cpm(u2 − u1).

The coefficient cp is called specific heat capacity.

2. The Fourier law describing the quantity of heat spreading through a surface S during
the time interval ∆t. It says that this quantity ∆Q is proportional to the area A(S) of the
surface, to the time ∆t and to the derivative of the temperature u along the normal n to the
surface:

∆Q = −k A(S)
∂u

∂n
∆t.

Here the coefficient k > 0 is called thermal conductivity. The negative sign means that the
heat is spreading from hot to cold regions.
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In order to derive the heat equation let us consider the heat balance within a domain
Ω ⊂ Rd with a smooth boundary ∂Ω. The total change of heat in the domain during the
time interval ∆t is

∆Q =
∫

Ω
cpρ [u(t+ ∆t, x)− u(t, x)] dV ·

where ρ is the mass density, such that the mass of the media contained in the volume is equal
to

m =
∫

Ω
ρ dV.

In the case of a homogeneous media the mass density is constant, so the heat quantity is
equal to

∆Q ' cpρ
∫

Ω

∂u

∂t
∆t dV.

This change of heat must be equal, with the negative sign, to the one passing through the
boundary ∂Ω

∆Q =
∫
∂Ω
k
∂u

∂n
dS ·∆t.

Using Green formula we can rewrite this heat flow in the form

k

∫
Ω

∆u dV ·∆t.

Dividing by ∆t in the limit ∆t→ 0 we arrive at the equation

cpρ

∫
Ω

∂u

∂t
dV = k

∫
Ω

∆u dV.

Since the domain Ω is arbitrary this gives the heat equation with the coefficient

a2 =
k

cpρ

(it is called thermal conductivity or thermal diffusivity).

5.2 Main boundary value problems for heat equation

The simplest boundary value problem is in finding a function u(x, t) satisfying

∂u

∂t
= a2∆u

(5.2.1)
u(x, 0) = φ(x), x ∈ Rd.

This is the already familiar Cauchy problem. The physical meaning of this problem is clear:
given the initial temperature distribution in the space to determine the temperature at any
time t > 0 at any point x of the space.

Often we are interested in the temperature distribution only within the bounded domain
Ω ⊂ Rd. In this case one has to add to the Cauchy data within Ω also the information about
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the temperature on the boundary ∂Ω or about the heat flux through the boundary. In this
way we arrive at two main mixed problems in a bounded domain:

The first mixed problem: find a function u(x, t) satisfying

∂u

∂t
= a2∆u, t > 0, x ∈ Ω

u(x, 0) = φ(x), x ∈ Ω (5.2.2)
u(x, t) = f(x, t), t > 0, x ∈ ∂Ω.

The second mixed problem is obtained from (5.2.2) by replacing the last condition by(
∂u

∂n

)
x∈∂Ω

= g(x, t), t > 0, x ∈ ∂Ω. (5.2.3)

In this equation n is the unit external normal to the boundary.

In the particular case of the boundary data independent of time

f = f(x) or g = g(x)

one can look for a stationary solution u satisfying

∂u

∂t
= 0.

In this case the first and the second mixed problem for the heat equation reduce respectively
to the Dirichlet and Neumann boundary value problem for the Laplace equation in Rd.

5.3 Fourier transform

Our next goal is to solve the one-dimensional Cauchy problem for heat equation on the line.
To this end we will develop a continuous analogue of Fourier series.

Let f(x) be an absolutely integrable complex valued function on the real line, i.e.,∫ ∞
−∞
|f(x)| dx <∞. (5.3.1)

Definition 5.3.1 The function

f̂(p) :=
1

2π

∫ ∞
−∞

f(x)e−ipxdx (5.3.2)

of the real variable p is called the Fourier transform of f(x).

Due to the condition (5.3.1) the integral converges absolutely and uniformly with respect
to p ∈ R. Thus the function f̂(p) is continuous in p.

Example. Let us compute the Fourier transform of the Gaussian function

f(x) = e−
x2

2 .
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We have ∫ ∞
−∞

e−
x2

2
−ipxdx =

∫ ∞
−∞

e−
1
2

(x+ip)2− p
2

2 dx

We want to perform a change of variables

s = x+ ip.

To do this one can consider the integral∮
C
e−

z2

2
− 1

2
p2dz, z = x+ iy (5.3.3)

over the boundary C of the rectangle on the complex z-plane

−R ≤ x ≤ R, 0 ≤ y ≤ p.

It is easy to see that the integrals over the vertical segments x = ±R, 0 ≤ y ≤ p in (5.3.3) tend
to zero when R→∞. The total integral is equal to zero since the integrand is holomorphic
on the entire complex plane. Hence∫ R

−R
e−

1
2
x2− 1

2
p2dx+

∫ −R
R

e−
1
2

(x+ip)2− p
2

2 dx→ 0 as R→∞,

so ∫ ∞
−∞

e−
1
2
x2− 1

2
p2dx =

∫ ∞
−∞

e−
1
2

(x+ip)2− p
2

2 dx.

Using the Euler integral ∫ ∞
−∞

e−
x2

2 dx =
√

2π (5.3.4)

we finally obtain the Fourier transform of the Gaussian function

f̂(p) =
1√
2π
e−

p2

2 . (5.3.5)

We will now establish, under certain additional assumptions, validity of the inversion
formula for the Fourier transform:∫ ∞

−∞
f̂(p)eipxdp = f(x). (5.3.6)

Theorem 5.3.2 Let the absolutely integrable function f(x) be differentiable at any point
x ∈ R. Then

lim
R→∞

∫ R

−R
f̂(p)eipxdp = f(x). (5.3.7)

Proof: Denote IR(x) the integral in the left hand side of (5.3.7). Using continuity and uniform
convergence of the Fourier integral (5.3.2) we can apply Fubini theorem to this integral and
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thus rewrite it as follows:

IR(x) =
∫ R

−R
f̂(p)eipxdp =

∫ R

−R

(
1

2π

∫ ∞
−∞

f(y)e−ipydy
)
eipxdp

=
1

2π

∫ ∞
−∞

f(y)
(∫ R

−R
eip(x−y)dp

)
dy =

1
π

∫ ∞
−∞

f(y)
sinR(x− y)

x− y
dy

=
1
π

∫ ∞
−∞

f(x+ s)
sinRs
s

ds =
1
π

∫ ∞
0

[f(x+ s) + f(x− s)] sinRs
s

ds.

We will now use the following Dirichlet integral :

Exercise 5.3.3 Prove that ∫ ∞
0

sinx
x

dx =
π

2
. (5.3.8)

Using this value we can rewrite the difference IR(x)− f(x) in the form

IR(x)− f(x) =
1
π

∫ ∞
0

f(x+ s)− 2f(x) + f(x− s)
s

sinRsds.

Because of differentiability

lim
s→0

f(x+ s)− 2f(x) + f(x− s)
s

= lim
s→0

f(x+ s)− f(x)
s

+lim
s→0

f(x− s)− f(x)
s

= f ′(x)−f ′(x) = 0.

the integrand

F (s;x) =


f(x+s)−2f(x)+f(x−s)

s , s 6= 0

0, s = 0

is a continuous functions in s depending on the parameter x. The proof of the inversion
formula (5.3.7) will follow from the following Riemann–Lebesgue lemma.

Lemma 5.3.4 Let a continuous function f(x) be absolutely integrable on R. Then

lim
λ→∞

∫ ∞
−∞

f(x)eiλxdx = 0.

Proof: Because of convergence of the integral
∫∞
−∞ f(x) dx the difference∫ ∞

−∞
f(x) dx−

∫ b

a
f(x) dx

tends to zero when a→ −∞ b→∞. So it suffices to prove the Lemma for the finite integral.
Because of integrability of f(x) there exists, for any given ε > 0, a partition of the interval

a = x0 < x1 < · · · < xn = b
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such that

0 <
∫ b

a
f(x) dx−

n∑
j=1

mj ∆xj < ε

where
∆xj = xj − xj−1

mj = inf
x∈[xj−1,xj ]

f(x).

Introduce a step-like function

g(x) = mj for x ∈ [xj−1, xj ], j = 1, . . . , n.

Then ∣∣∣∣∫ b

a
f(x)eiλxdx−

∫ b

a
g(x)eiλxdx

∣∣∣∣ ≤ ∫ b

a
|f(x)− g(x)|

∣∣∣eiλx∣∣∣ dx
=
∫ b

a
[f(x)− g(x)] dx < ε.

But the integral ∫ b

a
g(x)eiλxdx =

n∑
j=1

1
i λ

(
eiλxj − eiλxj−1

)
mj

tends to zero when λ→∞.

In order to complete the proof of the Theorem let us represent the last integral in the
form ∫ ∞

0

f(x+ s)− 2f(x) + f(x− s)
s

sinRsds =
∫ 1

0
F (s;x) sinRsds

+
∫ ∞

1

f(x+ s) + f(x− s)
s

sinRsds− 2f(x)
∫ ∞

1

sinRs
s

ds.

The first integral in the r.h.s. vanishes according to the Riemann–Lebesgue lemma. The same
is true for the second integral. Finally the last integral by a change of integration variable
x = Rs reduces to ∫ ∞

1

sinRs
s

ds =
∫ ∞
R

sinx
x

dx→ 0 for R→∞.

Exercise 5.3.5 Let f(x) be an absolutely integrable piecewise continuous function of x ∈ R
differentiable on every interval of continuity. Let us also assume that at every discontinuity
point x0 the left and right limits f−(x0) and f+(x0) exists and, moreover, the left and right
derivatives

lim
s→0−

f(x0 + s)− f−(x0)
s

and lim
s→0+

f(x0 + s)− f+(x0)
s
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exist as well. Prove the following modification of the inversion formula for the Fourier trans-
form

lim
R→∞

∫ R

−R
f̂(p)eipxdp =


f(x), x is a continuity point

f−(x)+f+(x)
2 , x is a discontinuity point

(5.3.9)

The main property of Fourier transform used for solving linear PDEs is given by the
following formula:

Lemma 5.3.6 Let f(x) be an absolutely integrable continuously differentiable function with
absolutely integrable derivative f ′(x). Then∫ ∞

−∞
f ′(x)e−ipxdx = ip f̂(p). (5.3.10)

Proof: From integrability of f ′(x) it follows existence of limits

f(±∞) := lim
x→±∞

f(x) = f(0) + lim
x→±∞

∫ x

0
f ′(y) dy.

Because of absolute integrability of f the limiting values f(±∞) must be equal to zero.
Integrating by parts∫ ∞

−∞
f ′(x)e−ipxdx =

(
e−ipxf(x)

)∞
−∞ + ip

∫ ∞
−∞

f ′(x)e−ipxdx = ipf̂(p)

we arrive at the needed formula.

Denote Fx→p the map of the space of functions in x variable to the space of functions in
p variable given by the Fourier transform:

Fx→p(f) = f̂(p). (5.3.11)

The inverse Fourier transform will be denoted Fp→x. The property formulated in the above
Lemma says that the operator of x-derivative transforms to the operator of multiplication by
the independent variable, up to a factor i:

Fx→p
(
d

dx
f

)
= ipFx→p(f). (5.3.12)

This property of the Fourier transform will be used in the next section for solving the Cauchy
problem for heat equation.

A similar calculation gives the formula

Fx→p (x f) = i
d

dp
Fx→p(f) (5.3.13)

valid for functions f = f(x) absolutely integrable together with xf(x). We leave the proof of
this formula as an exercise for the reader.
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5.4 Solution to the Cauchy problem for heat equation on the line

Let us consider the one-dimensional Cauchy problem for the heat equation

∂u

∂t
= a2∂

2u

∂x2
, t > 0

(5.4.1)
u(x, 0) = φ(x), x ∈ R.

Theorem 5.4.1 Let the initial data φ(x) be absolutely integrable function on R. Then the
Cauchy problem (5.4.1) has a unique solution u(x, t) absolutely integrable in x ∈ R for all
t > 0 represented by the formula

u(x, t) =
∫ ∞
−∞

G(x− y; t)φ(y) dy. (5.4.2)

where
G(x; t) =

1
2a
√
πt
e−

x2

4a2t . (5.4.3)

The integral representation (5.4.2) of solutions to the Cauchy problem is called Poisson
integral.

Proof: Denote

û(p, t) =
1

2π

∫ ∞
−∞

u(x, t)e−ipxdx

the Fourier-image of the unknown solution. According to Lemma 5.3.6 the function û(p, t)
satisfies equation

∂û(p, t)
∂t

= −a2p2û(p, t).

This equation can be easily solved

û(p, t) = û(p, 0)e−a
2p2t.

Due to the initial condition we obtain

û(p, 0) = φ̂(p) =
1

2π

∫ ∞
−∞

φ(x)e−ipxdx.

Thus
û(p, t) = φ̂(p)e−a

2p2t. (5.4.4)

It remains to apply the inverse Fourier transform to this formula:

u(x, t) =
∫ ∞
−∞

eixpφ̂(p)e−a
2p2tdp =

1
2π

∫ ∞
−∞

(
eixp−a

2p2t

∫ ∞
−∞

e−ipyφ(y) dy
)
dp

=
1

2π

∫ ∞
−∞

φ(y)
(∫ ∞
−∞

eip(x−y)−a2p2tdp

)
dy
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The integral in p is nothing but the (inverse) Fourier transform of the Gaussian function. A
calculation similar to the above one gives the value for this integral∫ ∞

−∞
eip(x−y)−a2p2tdp =

√
π

a
√
t
e−

(x−y)2

4a2t .

This completes the proof of the Theorem.

Remark 5.4.2 The formula (5.4.2) can work also for not necessarily absolutely integrable
functions. For example for the constant initial data φ(x) ≡ φ0 we obtain u(x, t) ≡ φ0 due to
the following integral

1
2a
√
πt

∫ ∞
−∞

e−
(x−y)2

4a2t dy ≡ 1. (5.4.5)

We will now use the Poisson integral (5.4.2) in order to prove an analogue of the maximum
principle for solutions to the heat equation.

Theorem 5.4.3 The solution to the Cauchy problem represented by the Poisson integral
(5.4.2) for all t > 0 satisfies

inf
x∈R

φ(x) ≤ u(x, t) ≤ sup
x∈R

φ(x). (5.4.6)

Moreover, if some of the inequalities becomes equality for some t > 0 and x ∈ R then u(x, t) ≡
const.

Proof: The inequalities (5.4.6) easily follow from positivity of the Gaussian function and
from the integral (5.4.5). Due to the same positivity the equality can have place only if
φ(x) = const. But then also u(x, t) = const.

Corollary 5.4.4 The solution to the Cauchy problem (5.4.1) for the heat equation depends
continuously on the initial data.

Proof: Let u1(x, t), u2(x, t) be two solutions to the heat equation with the initial data φ1(x)
and φ2(x) respectively. If the initial data differ by ε, i.e.

|φ1(x)− φ2(x)| ≤ ε ∀x ∈ R

then from the maximum principle applied to the solution u(x, t) = u1(x, t)−u2(x, t) it follows
that

|u1(x, t)− u2(x, t)| ≤ ε.
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5.5 Mixed boundary value problems for the heat equation

Let us begin with the periodic problem

∂u

∂t
= a2∂

2u

∂x2
, t > 0

u(x+ 2π, t) = u(x, t), t > 0 (5.5.1)
u(x, 0) = φ(x)

where φ(x) is a smooth 2π-periodic function.

Theorem 5.5.1 There exists a unique solution to the problem (5.5.1). It can be represented
in the form

u(x, t) =
1

2π

∫ 2π

0
Θ(x− y; t)φ(y) dy, t > 0 (5.5.2)

where
Θ(x; t) =

∑
n∈Z

e−a
2n2t+inx. (5.5.3)

Proof: Let us expand the unknown periodic function u(x, t) in the Fourier series:

u(x, t) =
∑
n∈Z

ûn(t)einx

ûn(t) =
1

2π

∫ 2π

0
u(x, t)e−inxdx.

The substitution to the heat equation yields

∂ûn(t)
∂t

= −a2n2ûn(t),

so
ûn(t) = ûn(0)e−a

2n2t, n ∈ Z.

At t = 0 one must meet the initial conditions, hence we arrive at the formula

ûn(t) = φ̂ne
−a2n2t

φ̂n =
1

2π

∫ 2π

0
φ(y)e−inydy.

For the function u(x, t) we obtain

u(x, t) =
1

2π

∑
n∈Z

∫ 2π

0
e−a

2n2t+in(x−y)φ(y)dy.

In order to complete the proof of the Theorem it suffices to show that the series (5.5.3)
converges absolutely and uniformly for all x ∈ R and all t > 0. This easily follows from
convergence of the integral ∫ ∞

0
e−a

2x2tdx <∞ for t > 0.
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In a similar way one can prove that the series (5.5.3) can be differentiated any number of
times. The theorem is proved.

The function defined by the series (5.5.3) is called theta-function. It is expressed via the
Jacobi theta-function

θ3(φ | τ) =
∑
n∈Z

eπin
2τ+2πinφ (5.5.4)

by a change of variables

Θ(x; t) = θ3(φ | τ), φ =
1

2π
x, τ = i

a2t

π
. (5.5.5)

The convergence of the series (5.5.4) for Jacobi theta function takes place for all complex
values of τ provided

Im τ > 0. (5.5.6)

The function Θ(x; t) is periodic in x with the period 2π while the Jacobi theta-function is
periodic in φ with the period 1. It satisfies many remarkable properties. Some of them will
be now formulated as a series of exercises.

Exercise 5.5.2 Prove that ∫ 2π

0
Θ(x; t) dx = 2π. (5.5.7)

Exercise 5.5.3 Prove that the series ∑
n∈Z

e−a
2n2t+inz (5.5.8)

converges for any complex number z = x + iy uniformly on the strips |Im z| ≤ M for any
positive M . Derive that the theta-function (5.5.3) can be analytically continued to a function
Θ(z; t) holomorphic on the entire complex z-plane.

Exercise 5.5.4 Prove that the function Θ(z; t) satisfies the identity

Θ
(
z + 2ia2t; t

)
= e−a

2t+izΘ(z; t). (5.5.9)

The complex number 2ia2t is called quasi-period of the theta-function.

Exercise 5.5.5 Prove that the theta-function has zeroes at the points

xk l = π(2k + 1) + ia2t (2l + 1), k, l ∈ Z. (5.5.10)

Exercise 5.5.6 Prove that the theta-function has no other zeroes on the complex plane.
Derive that, in particular

Θ(x; t) > 0 for x ∈ R. (5.5.11)
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Hint: Compute the integral
1

2πi

∮
C

dΘ(z; t)
Θ(z, t)

over the oriented boundary of the rectangle

C = {0 ≤ x ≤ 2π, 0 ≤ y ≤ 2a2t}

on the complex z-plane, z = x+ iy.

Another proof of positivity of the theta-function follows from the following Poisson sum-
mation formula that is of course of interest on its own.

Lemma 5.5.7 Let f(x) be a continuously differentiable absolutely integrable function satis-
fying the inequalities

|f(x)| < C(1 + |x|)−1−ε, |f̂(p)| < C(1 + |p|)−1−ε

for some positive ε. Here f̂(p) is the Fourier transform of f(x). Then∑
n∈Z

f(2πn) =
∑
m∈Z

f̂(m). (5.5.12)

Proof: We will actually prove a somewhat more general formula∑
n∈Z

f(x+ 2πn) =
∑
m∈Z

f̂(m)eimx. (5.5.13)

Since the function in the left hand side is 2π-periodic in x, it suffices to check that the Fourier
coefficients cm of this function coincide with f̂(m). Indeed, the m-th Fourier coefficient of
the left hand side is equal to

cm =
1

2π

∫ 2π

0

(∑
n∈Z

f(x+ 2πn)

)
e−imxdx.

Due to absolute and uniform (in x) convergence of the series∑
n∈Z

f(x+ 2πn)

one interchange the order of summation and integration to arrive at

cm =
1

2π

∑
n∈Z

∫ 2π

0
f(x+ 2πn)e−imxdx.

Doing a shift in the n-the integral
y = x+ 2πn

one rewrites the sum as follows:

cm =
1

2π

∑
n∈Z

∫ 2π(n+1)

2πn
f(y)e−imy−2πimndy =

1
2π

∫ ∞
−∞

f(y)e−imydy = f̂(m)

since e−2πimn = 1.

Using the Poisson summation formula we can prove the following remarkable identity for
the theta-function.
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Proposition 5.5.8 The theta-function (5.5.1) satisfies the following identity

Θ(x; t) =
1
a

√
π

t

∑
n∈Z

e−
(x+2πn)2

4a2t . (5.5.14)

Proof: It can be obtained by applying the Poisson summation formula to the function

f(x) =
1
a

√
π

t
e−

x2

4a2t , f̂(p) = e−a
2p2t.

Remark 5.5.9 The formula (5.5.14) is the clue to derivation of the transformation law for
the Jacobi theta-function under modular transformations

τ 7→ aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1.

Let us now consider the first mixed problem for heat equation on the interval [0, l] with
zero boundary conditions:

∂u

∂t
= a2∂

2u

∂x2
, 0 ≤ x ≤ l, t > 0

u(0, t) = u(l, t) = 0 (5.5.15)
u(x, 0) = φ(x), 0 ≤ x ≤ l.

Like in Section 3.6 above, let us extend the initial data φ(x) to the real line as an odd 2l-
periodic function. We leave as an exercise for the reader to check that the solution to this
periodic Cauchy problem will remain an odd periodic function for all times and, hence, it
will vanish at the points x = 0 and x = l. In this way one arrives at the following

Theorem 5.5.10 The mixed b.v.p. (5.5.15) has a unique solution for an arbitrary smooth
function φ(x). It can be represented by the following integral

u(x, t) =
1
l

∫ l

0
Θ̃(x, y; t)φ(y) dy (5.5.16)

where

Θ̃(x, y; t) = 2
∞∑
n=1

e−a
2n2t sin

πnx

l
sin

πny

l
. (5.5.17)

5.6 More general boundary conditions for the heat equation. Solution to
the inhomogeneous heat equation

In the previous section the simplest b.v.p. for the heat equation has been considered. We
will now address the more general problem

∂u

∂t
= a2∂

2u

∂x2
, t > 0, 0 < x < l (5.6.1)

u(0, t) = f0(t), u(l, t) = f1(t), t > 0
u(x, 0) = φ(x), 0 < x < l.
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The following simple procedure reduces the above problem to the b.v.p. with zero boundary
condition for the inhomogeneous heat equation

∂v

∂t
= a2 ∂

2v

∂x2
+ F (x, t), t > 0, 0 < x < l (5.6.2)

v(0, t) = v(l, t) = 0, t > 0
v(x, 0) = Φ(x), 0 < x < l

where the functions F (x, t), Φ(x) are given by

F (x, t) = −
[
df0(t)
dt

+
x

l

(
df1(t)
dt
− df0(t)

dt

)]
(5.6.3)

Φ(x) = φ(x)−
[
f0(0) +

x

l
(f1(0)− f0(0))

]
.

Indeed, it suffices to do the following substitution

u(x, t) = v(x, t) +
[
f0(t) +

x

l
(f1(t)− f0(t))

]
(5.6.4)

observing that the expression in the square brackets is annihilated by the operator ∂2/∂x2.
Moreover, the function in the square brackets takes the needed values f0(t) and f1(t) at the
endpoints of the interval.

In the more general case of multidimensional heat equation with non-vanishing boundary
conditions

∂u

∂t
= a2∆u, t > 0, x ∈ Ω ⊂ Rd (5.6.5)

u(x, t)|x∈∂Ω = f(x, t), t > 0
u(x, 0) = φ(x), x ∈ Ω

the procedure is similar to the above one. Namely, denote u0(x, t) the solution to the Dirichlet
boundary value problem for the Laplace equation in x depending on t as on the parameter:

∆u0 = 0, x ∈ Ω ⊂ Rd (5.6.6)
u0(x, t)|x∈∂Ω = f(x, t).

We already know that the solution to the Dirichlet boundary value problem is unique and
depends continuously on the boundary conditions. Therefore the solution u0(x, t) is a contin-
uous function on Ω×R>0. One can also prove that this functions is smooth, if the boundary
data f(x, t) are so. Then the substitution

u(x, t) = v(x, t) + u0(x, t) (5.6.7)

reduces the mixed b.v.p. (5.6.6) to the one with zero boundary conditions

v(x, t)|x∈∂Ω = 0, t > 0

with the modified initial data

v(x, 0) = φ(x)− u0(x, 0), x ∈ Ω
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but the heat equation becomes inhomogeneous one:

∂v

∂t
= a2∆v + F (x, t), F (x, t) = −∂u0(x, t)

∂t
, x ∈ Ω.

We will now explain a simple method for solving the inhomogeneous heat equation. For
the sake of simplicity let us consider in details the case of one spatial variable. Moreover we
will concentrate on the infinite line case. So the problem under consideration is in finding a
function u(x, t) on R× R>0 satisfying

∂u

∂t
= a2∂

2u

∂x2
+ f(x, t), x ∈ R, t > 0 (5.6.8)

u(x, 0) = φ(x).

Theorem 5.6.1 The solution to the inhomogeneous problem (5.6.8) has the form

u(x, t) =
∫ t

0
dτ

∫ ∞
−∞

G(x− y; t− τ) f(y, τ)dy +
∫ ∞
−∞

G(x− y; t)φ(y) dy (5.6.9)

where the function G(x; t) was defined in (5.4.3).

Proof: As we already know from Theorem 5.4.1 the second term

u2(x, t) =
∫ ∞
−∞

G(x− y; t)φ(y) dy

in (5.6.9) solves the homogeneous heat equation and satisfies initial condition

u2(x, 0) = φ(x).

The first term

u1(x, t) =
∫ t

0
dτ

∫ ∞
−∞

G(x− y; t− τ) f(y, τ)dy

clearly vanishes at t = 0. Let us prove that it satisfies the inhomogeneous heat equation

∂u1

∂t
= a2∂

2u1

∂x2
+ f(x, t).

Denote
v(x, t; τ) =

∫ ∞
−∞

G(x− y; t− τ) f(y, τ)dy.

Like in the Theorem 5.4.1 we derive that this is a solution to the homogeneous heat equation
in x, t depending on the parameter τ . This solution is defined for t ≥ τ ; for t = τ it satisfies
the initial condition

v(x, τ ; τ) = f(x, τ).

Applying the heat operator to the function

u1(x, t) =
∫ t

0
v(x, t; τ) dτ

one obtains(
∂

∂t
− a2 ∂

2

∂x2

)
u1(x, t) = v(x, t; t) +

∫ t

0

(
∂

∂t
− a2 ∂

2

∂x2

)
v(x, t; τ) dτ = v(x, t; t) = f(x, t).
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5.7 Exercises to Section 5

Exercise 5.7.1 Let the function f(x) belong to the class Ck(R) and, moreover, all the func-
tions f(x), f ′(x), . . . , f (k)(x) be absolutely integrable on R. Prove that then

f̂(p) = O
(

1
pk

)
for |p| → ∞. (5.7.1)

Exercise 5.7.2 Let f̂(p) be the Fourier transform of the function f(x). Prove that eiapf̂(p)
is the Fourier transform of the shifted function f(x+ a).

Exercise 5.7.3 Find Fourier transforms of the following functions.

f(x) = ΠA(x) =
{

1
2A , |x| < A
0, otherwise

(5.7.2)

f(x) = ΠA(x) cosωx (5.7.3)

f(x) =

{
1
A

(
1− |x|A

)
, |x| < A

0, otherwise
(5.7.4)

f(x) = cos ax2 and f(x) = sin ax2 (a > 0) (5.7.5)

f(x) = |x|−
1
2 and f(x) = |x|−

1
2 e−ax (a > 0). (5.7.6)

Exercise 5.7.4 Find the function f(x) if its Fourier transform is given by

f̂(p) = e−k|p|, k > 0. (5.7.7)

Exercise 5.7.5 Let u = u(x, y) be a solution to the Laplace equation on the half-plane y ≥ 0
satisfying the conditions

∆u(x, y) = 0, y > 0
u(x, 0) = φ(x)
u(x, y)→ 0 as y → +∞ for every x ∈ R (5.7.8)

1) Prove that the Fourier transform of u in the variable x

û(p, y) =
1

2π

∫ ∞
−∞

u(x, y)e−ipxdx

has the form
û(p, y) = φ̂(p)e−y |p|.

Here φ̂(p) is the Fourier transform of the boundary function φ(x).

2) Derive the following formula for the solution to the b.v.p. (5.7.8)

u(x, y) =
1
π

∫ ∞
−∞

y

(x− s)2 + y2
φ(s) ds. (5.7.9)
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6 Introduction to nonlinear PDEs

6.1 Method of characteristics for the first order quasilinear equations

Let us recall (see Section 2.5 above) the procedure of construction of the general solution for
the first order linear homogeneous equation

∂u

∂t
=

d∑
i=1

ai(x, t)
∂u

∂xi
. (6.1.1)

Here and below x = (x1, . . . , xd). One has to consider the system of equations for the
characteristics of (6.1.1)

ẋi = ai(x, t), i = 1, . . . , d
ṫ = −1.

Using t as the parameter along the characteristics one can recast the above system into the
form

dxi
dt

+ ai(x, t) = 0, i = 1, . . . , d. (6.1.2)

Any solution to the system (6.1.1) is a function u = u(x, t) constant along the characteristics.
Recall that such functions are called first integrals of the system of ODEs (6.1.2).

In order to construct the general solution to (6.1.1) one has to find d independent first
integrals, i.e., d particular solutions u1(x, t), . . . , ud(x, t) to the PDE (6.1.1) satisfying the
condition

det

 ∂u1/∂x1 . . . ∂u1/∂xd
. . . . . . . . .

∂ud/∂x1 . . . ∂ud/∂xd

 6= 0 (6.1.3)

at a given point (x0, t0) ∈ Rd × R. Then the general solution to the PDE (6.1.1) near this
point can be written as follows

u(x, t) = U (u1(x, t), . . . , ud(x, t)) (6.1.4)

where U(u1, . . . , ud) is an arbitrary smooth function of d variables. Indeed, the following
simple statement holds true.

Proposition 6.1.1 Let u(x, t) be a solution to the Cauchy problem for the equation (6.1.1)
defined in a neighborhood of the point (x0, t0) and satisfying the initial condition

u(x, t0) = φ(x), |x− x0| < ρ (6.1.5)

with a smooth function φ(x) defined on the ball |x− x0| < ρ for some positive ρ. Then there
exists a smooth function U(u1, . . . , ud) on some neighborhood of the point

u0 := (u0
1, . . . , u

0
d) = (u1(x0, t0), . . . , ud(x0, t0)) ∈ Rd

such that the solution u(x, t) can be represented in the form (6.1.4) for |x−x0| < ρ1 for some
positive ρ1 ≤ ρ.
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Proof: Applying the theorem about the inverse mapping to the system

u1 = u1(x, t0)
. . . . . . . . .

ud = ud(x, t0)

one obtains smooth functions

x1 = x1(u1, . . . , ud)
. . . . . . . . . . . .

xd = xd(u1, . . . , ud)

defined on some neighborhood of the point u0 and uniquely determined by the conditions

xi(u0
1, . . . , u

0
d) = x0

i , i = 1, . . . , d.

This can be done due to the assumption (6.1.3). We put

U(u1, . . . , ud) := φ (x1(u1, . . . , ud), . . . , xd(u1, . . . , ud)) .

Such a function gives the needed representation of the solution u(x, t).

Let us now consider a quasilinear equation, not necessarily homogeneous. By definition
such an equation has the form

∂u

∂t
=

d∑
i=1

ai(u, x, t)
∂u

∂xi
+ b(u, x, t) (6.1.6)

with the coefficients a1(u, x, t), . . . , ad(u, x, t), b(u, x, t) being smooth functions on some
neighborhood of a point (u0, x0, t0) ∈ R × Rd × R. The following trick reduces the problem
(6.1.6) to the previous one. Let us look for solutions to (6.1.6) written in the implicit form

f(u, x, t) = 0 (6.1.7)

where f(u, x, t) is a smooth function defined on some neighborhood of the point (u0, x0, t0)
satisfying the condition

fu(u0, x0, t0) 6= 0. (6.1.8)

According to the implicit function theorem, the assumption (6.1.8) implies existence and
uniqueness of a smooth function u(x, t) defined on some neighborhood of the point (x0, t0) ∈
Rd × R and satisfying u(x0, t0) = u0. Let us derive the condition for the function f that
guarantees that u(x, t) satisfies (6.1.6). According to the implicit function theorem the partial
derivatives of the function u(x, t) determined by (6.1.7) can be written in the form

∂u

∂t
= − ft(u, x, t)

fu(u, x, t)
,

∂u

∂xi
= −fxi(u, x, t)

fu(u, x, t)
, i = 1, . . . , d. (6.1.9)

The substitution to (6.1.6) yields a linear homogeneous PDE for the function f of d + 2
variables

∂f

∂t
=

d∑
i=1

ai(u, x, t)
∂f

∂xi
− b(u, x, t)∂f

∂u
. (6.1.10)
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The solution f(u, x, t) to this PDE with the initial data chosen in the form

f(u, x, t0) = u− φ(x) (6.1.11)

give a solution to the original PDE (6.1.6) specified by the initial data

u(x, t0) = φ(x), |x− x0| < ρ (6.1.12)

for some positive ρ. Note that the function φ must satisfy φ(x0) = u0. The PDE (6.1.10)
can be solved by the method of characteristics. The characteristics in the (d+2)-dimensional
space with the coordinates u, x1, . . . , xd, t can be determined from the following system of
ODEs

∂xi
∂t

+ ai(u, x, t) = 0, i = 1, . . . , d

(6.1.13)
∂u

∂t
= b(u, x, t).

Like above, one has to find (d+1) independent first integrals, i.e., (d+1) particular solutions
f0(u, x, t), . . . , fd(u, x, t) satisfying

det



∂f0/∂u ∂f0/∂x1 . . . ∂f0/∂xd

∂f1/∂u ∂f1/∂x1 . . . ∂f1/∂xd

. . . . . . . . . . . .

∂fd/∂u ∂fd/∂x1 . . . ∂fd/∂xd


6= 0 (6.1.14)

at the given point (u0, x0, t0). The general solution to the PDE (6.1.10) can be represented
in the form

f(u, x, t) = F (f0(u, x, t), f1(u, x, t), . . . , fd(u, x, t)) . (6.1.15)

The smooth function F of (d + 1) variables has to be determined from the Cauchy data
(6.1.11)

F (f0(u, x, t0), . . . , fd(u, x, t0)) = u− φ(x). (6.1.16)

As above we establish local existence and uniqueness of such a solution. We leave the details
of the proof as an exercise for the reader.

Let us consider in more details the case of quasilinear homogeneous equations in one
spatial dimension with coefficients independent from x and t

ut = a(u)ux. (6.1.17)

The equations for the characteristics become very simple in this particular case:

dx

dt
+ a(u) = 0

(6.1.18)
du

dt
= 0.
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The solutions are straight lines

u = const, x+ a(u)t = const. (6.1.19)

Thus the general solution u = u(x, t) can be written in the implicit form

x+ a(u)(t− t0) = f(u). (6.1.20)

The function f(u) has to be determined from the initial condition

u(x, t0) = φ(x).

This gives
x = f (φ(x)) .

The solution to the last equation exists if the initial function φ(x) is monotonous near the
point x = x0. Then the function f coincides with the inverse function φ−1.

Example. In the proof of the Cauchy–Kovalevskaya theorem we arrived at the following
Cauchy problem

vt =
M n

1− n
r v
vx

v(x, 0) =
M x

ρ− x
.

(see (1.2.26) above). The general solution to the PDE in the implicit form reads

x+
M n

1− n
r v

t = f(v)

for an arbitrary function f(v) to be determined by the initial data. To do this one has to
solve the equation

v =
M x

ρ− x
for x. This gives

x =
ρ v

M + v
=: f(v).

Thus the solution to the above Cauchy problem has to be determined from the algebraic
equation

x+
M n

1− n
r v

t =
ρ v

M + v
. (6.1.21)

This coincides with (1.2.27).

For the particular case a(u) = c=const the equation

ut + a(u)ux = 0 (6.1.22)

describes propagation of waves with constant speed c. The characteristics in this case are
just parallel lines

x = c t+ x0.
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We will now concentrate our attention at the simplest example of a nonlinear PDE of the
above form

vt + v vx = 0 (6.1.23)

called Hopf equation. This equation can be used as the simplest example of equations de-
scribing motion of an ideal incompressible fluid. The fluid can be considered as a system
of an infinite number of particles distributed with some density ρ that in the incompressible
case will be assumed to be constant. The particles can be “labeled” in two different ways.
In the Lagrange parameterization one can label the particles by their positions ξ ∈ R at a
certain initial moment of time. The motion then will be described by a pair of functions

x = x(ξ, t) (6.1.24)
v = v(ξ, t)

where x(ξ, t) and v(ξ, t) are the coordinate and the velocity of the particle with the “number
ξ” at the moment t. By definition we have

∂x(ξ, t)
∂t

= v(ξ, t). (6.1.25)

In the Euler parameterization we just follow the motion of the particle passing through
the point x at the moment t. Any physical quantity f assigned to every particle (e.g., the
temperature8 of the particle) will be characterized by a function f = f(x, t).

Proposition 6.1.2 If the quantity f is conserved, i.e., it depends only on the initial position
of the particles, f = f(ξ), then the function f(x, t) satisfies the equation

∂f(x, t)
∂t

+ v(x, t)
∂f(x, t)
∂x

= 0. (6.1.26)

Proof: By using the chain rule along with (6.1.25) we obtain

0 =
d

dt
f(ξ) =

∂f

∂x

∂x

∂t
+
∂f

∂t
=
∂f

∂t
+ v

∂f

∂x
.

Exercise 6.1.3 In the three-dimensional case of a fluid moving with the velocity v = (vx, vy, vz)
derive a similar equation for dependence of a conserved quantity f = f(x, y, z; t):

∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z
= 0. (6.1.27)

Let us consider the free motion of an ideal incompressible fluid. In this case no external
forces act on the particles of the fluid. Because of this the momentum of every particle is
conserved. From the Proposition 6.1.2 one immediately obtains

8In the case f=temperature of the water in the river the function f(x, t) is obtained by measuring the
temperature sitting on the beach while f(ξ, t) can be measured from the boat drifting freely along the stream
of the river.
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Corollary 6.1.4 For the free motion of an ideal incompressible fluid the velocity v(x, t)
satisfies equation (6.1.23).

According to the general procedure the Cauchy problem for the equation (6.1.23) with
the initial data

v(x, 0) = φ(x) (6.1.28)

for small time t can be written in the implicit form

x = v t+ f(v) (6.1.29)
f (φ(x)) = x.

on every interval of monotonicity of the initial data φ(x). Let us try to figure out what can
happen when the time is not that small.

The solution v = v(x, t) to the equation (6.1.29) exists provided the conditions of the
implicit function theorem hold true:

t+ f ′(v) 6= 0. (6.1.30)

At this moment the function v t + f(v) is not monotone any more, so the equation (6.1.29)
cannot be solved for v. Let us assume for simplicity that the initial data is a globally
monotone decreasing function. Then the inverse function f(v) will be monotone decreasing
as well. Denote t0 the first moment of time for which the function v t + f(v) becomes not
a monotone function at some point v0. It is clear that v0 must be an inflection point of the
graph

x = v t+ f(v)

i.e., at this point one must have
f ′′(v0) = 0.

In this way we arrive at the considering the following “bad points” (x0, t0, v0) where the
implicit function theorem does not work any more. The coordinates of these points can be
determined from the following system

x0 = v0t0 + f(v0)
t0 + f ′(v0) = 0 (6.1.31)
f ′′(v0) = 0.

Such a point (x0, t0) is called the point of gradient catastrophe. The solution to the Cauchy
problem (6.1.28) exists for all x ∈ R only for t < t0; the derivatives ux and ut become infinite
at the point of gradient catastrophe.

6.2 Higher order perturbations of the first order quasilinear equations.
Solution of the Burgers equation

As we have seen in the previous section the life span of a typical solution to the equations of
motion of an ideal incompressible fluid is finite: the solution does not exist beyond the point
of gradient catastrophe. Such a phenomenon suggests that the real physical process can be
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only approximately described by the equation (6.1.23). Near the point of catastrophe higher
corrections have to be taken into account.

We will consider two main classes of such perturbations of Hopf equation: Burgers equa-
tion

vt + v vx = ν vxx (6.2.1)

and Korteweg - de Vries (KdV) equation

vt + v vx + ε2vxxx = 0. (6.2.2)

The small parameters ν and ε will be assumed to be positive. The Burgers equation arises
in the description of one-dimensional waves in the presence of small dissipative effects; the
small parameter ν is called the viscosity coefficient. The Korteweg - de Vries (KdV) equation
describes one-dimensional waves with no dissipation but in the presence of small dispersion.
It turns out that in both cases the perturbation, whatever small it be, resolves the problem
with non-existence of solutions to the Cauchy problem for large time. However we will see
that the properties of solutions to the equations (6.2.1) and (6.2.2) are rather different.

Let us first explain in what sense the equation (6.2.1) has to be considered as a dissipative
equation but there is no dissipation in (6.2.2). First observe that both equations have a family
of constant solutions

v = c.

We will now apply the general linearization procedure in order to study small perturbations
of constant solutions. The idea is to look for the perturbed solutions in the form

v(x, t) = c+ δv(x, t). (6.2.3)

The perturbation as well as its derivatives are assumed to be small, so we will neglect the
terms quadratic in δv etc.. In such a way we arrive at the linearized Burgers equation

δvt + c δvx = ν δvxx (6.2.4)

and the linearized KdV equation

δvt + c δvx + ε2δvxxx = 0. (6.2.5)

Let us look for the plane wave solutions to these equations:

δv = a eikx−iωt.

The substitution to (6.2.4) and (6.2.7) yields the dispersion relation between the wave number
k and the frequency ω. Namely, we obtain that

ω = c k − iν k2 (6.2.6)

for Burgers equation and
ω = c k − ε2k3 (6.2.7)

for the KdV equation. We conclude that the small perturbations of the constant solutions to
the Burgers equation exponentially decay at t→ +∞

δv = a eik(x−ct)−ν k2t, |δv| = |a|e−νk2t → 0
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while for the KdV equation the magnitude of small perturbations remains unchanged:

δv = a eik(x−ct)+iε2k3t, |δv| ≡ |a|.

We postpone the explanation of the dispersive nature of the KdV equation till Section 6.4.
We will now concentrate our attention on the solutions to Burgers equation. We will first
prove global solvability for (6.2.1) for a suitable class of initial data.

Theorem 6.2.1 The solution to the Cauchy problem

v(x, 0) = φ(x)

for the Burgers equation (6.2.1) exists and is unique for all t > 0. It can be represented in
the following form

v(x, t) = −2ν
∂

∂x
log
{

1
2
√
π ν t

∫ ∞
−∞

exp
[
−(x− y)2

4ν t
− 1

2ν

∫ y

0
φ(y′) dy′

]
dy

}
(6.2.8)

Proof: The central step in the derivation of the formula (6.2.8) is in the following

Lemma 6.2.2 (Cole - Hopf transformation). The substitution

v = −2ν
∂

∂x
log u (6.2.9)

transforms the Burgers equation (6.2.1) to the heat equation

ut = ν uxx. (6.2.10)

Proof: We have

vt = 2ν
utux − uuxt

u2

vx = 2ν
u2
x − uuxx
u2

vxx = 2ν
3uuxuxx − u2uxxx − 2u3

x

u3
.

After substitution into the Burgers equation and division by (−2ν) we arrive at

0 =
u (ut − ν uxx)x − ux (ut − ν uxx)

u2
=

∂

∂x

ut − ν uxx
u

.

So, if u = u(x, t) satisfies heat equation (6.2.10) then the function v given by (6.2.9) satisfies
Burgers equation.

We can now complete the proof of the Theorem. The solution to the heat equation (6.2.10)
with the initial data u(x, 0) = ψ(x) can be represented by the Poisson integral

u(x, t) =
1

2
√
π ν t

∫ ∞
−∞

e−
(x−y)2

4ν t ψ(y) dy.

89



According to (6.2.9) the initial data for the Burgers and heat equations must be related by

φ(x) = −2ν [logψ(x)]x .

Integrating9 one obtains
ψ(x) = e−

1
2ν

R x
0 φ(x′) dx′ .

Hence
u(x, t) =

1
2
√
π ν t

∫ ∞
−∞

e−
(x−y)2

4ν t
− 1

2ν

R y
0 φ(y′) dy′ dy.

Applying the transformation (6.2.9) one arrives at the formula (6.2.8).

Example. Let us consider the solution to the Burgers equation (6.2.1) with the step-like
initial data

φ(x) =
{

1, x < 0
−1, x > 0

(6.2.11)

Integrating one obtains the initial data for the heat equation The Poisson integral gives the
solution in the form

ψ(x) = e
|x|
2ν .

So

u(x, t) =
1

2
√
π ν t

[∫ 0

−∞
e−

(x−y)2
4ν t

− y
2ν dy +

∫ ∞
0

e−
(x−y)2

4ν t
+ y

2ν dy

]
=

1
2
√
π ν t

[∫ 0

−∞
e−

(y−x+t)2
4ν t

+ t−2x
4ν dy +

∫ ∞
0

e−
(y−x−t)2

4ν t
+ t+2x

4ν dy

]
=

1√
π

[
e
t−2x
4ν

∫ ∞
x−t

2
√
ν t

e−s
2
ds+ e

t+2x
4ν

∫ x+t
2
√
ν t

−∞
e−s

2
ds

]

=
1√
π

{
e
t−2x
4ν

[∫ ∞
0

e−s
2
ds−

∫ x−t
2
√
ν t

0
e−s

2
ds

]
+ e

t+2x
4ν

[∫ 0

−∞
e−s

2
ds+

∫ x+t
2
√
ν t

0
e−s

2
ds

]}

=
1
2
e
t
4ν

(
e
x
2ν + e−

x
2ν

)
+

1
2
e
t
4ν

[
e
x
2ν Erf

(
x+ t

2
√
ν t

)
− e−

x
2ν Erf

(
x− t
2
√
ν t

)]
where

Erf(x) =
2√
π

∫ x

0
e−s

2
ds

is the error function.
9It is easy to see that another choice of the integration constant changes u 7→ c u with a nonzero constant

c. Such a change leaves invariant the logarithmic derivative ∂
∂x

log u.
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Fig. 7. Graph of the error function

Observe that the error function takes values very close to ±1 away from the interval (−2, 2);
near the origin it is well approximated by the linear function with the slope

Erf ′(0) =
2√
π
' 1.128.

Substitution to the formula (6.2.8) gives, after simple computations, the solution to the
Burgers equation with the step-like initial data

v(x, t) = −
sinh x

2ν + 1
2

[
e
x
2ν Erf x+t

2
√
ν t

+ e−
x
2ν Erf x−t

2
√
ν t

]
cosh x

2ν + 1
2

[
e
x
2ν Erf x+t

2
√
ν t
− e−

x
2ν Erf x−t

2
√
ν t

] (6.2.12)

When t→ +0 the arguments of the Erf functions tend to ±∞ for x > 0 or x < 0 respectively.
So for positive x the numerator and the denominator both tend to sinh x

2ν + cosh x
2ν , thus the

function v(x, t) tends to −1. For negative x the numerator tends to sinh x
2ν − cosh x

2ν , and
the denominator tends to cosh x

2ν − sinh x
2ν , thus v(x, t)→ +1.

It is also easy to describe the large time asymptotics of the solution (6.2.12). Indeed, for
t→ +∞ one has

x+ t

2
√
ν t
→ +∞, x− t

2
√
ν t
→ −∞.

Hence
lim

t→+∞
v(x, t) = − tanh

x

2ν
. (6.2.13)

Observe that for small ν the limiting curve is very close to the original step-like profile.
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Fig. 8. Solution to the Burgers equation with ν = 1 with the step-like initial data (6.2.11)

From Fig. 8 it is clear that, for small time the solution v(x, t) departs rapidly from the initial
data but then the deviation becomes more slow. The next picture suggests that the smaller
is the viscosity ν the closer to the initial step-like data remains the solution.
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Fig. 9. Solution to the Burgers equation with ν = 0.2 with the step-like initial data (6.2.11)

Exercise 6.2.3 Prove that the solution (6.2.12) for any x, t (with t > 0) for ν → 0 tends to
the step-like function (6.2.11).

One can prove that, more generally speaking a generic solution to the Burgers equation
in the limit of small viscosity ν → 0 tends to a discontinuous function within a certain region
of the (x, t)-half-plane. In fluid dynamics such discontinuities can be interpreted as shock
waves. The proof of this statement will not be given in the lectures. Our nearest goal is
to study the behaviour of generic solutions to the Burgers equation for ν → 0. In the next
section we will introduce a necessary analytic tool for such a study.

6.3 Asymptotics of Laplace integrals. Stationary phase asymptotic for-
mula

In this section we will derive an important asymptotic formula for calculation of the Laplace
integrals of the form

I(ε) =
∫ b

a
f(x)e−

S(x)
ε dx (6.3.1)

with smooth functions f(x), S(x) depending on a small positive parameter ε. The basic idea
is that, for ε→ +0 the main contribution to the integral comes from the minima of the phase
function S(x). More precise statements are contained in the following propositions.

Lemma 6.3.1 Denote m = infx∈(a,b) S(x). Suppose that the integral (6.3.1) converges ab-
solutely for some ε0 > 0. Then it converges absolutely also for any positive ε ≤ ε0 and the
following estimate holds true

|I(ε)| ≤ Ae−
m
ε (6.3.2)

for some real constant A.

Proof: Indeed,

|I(ε)| =
∣∣∣∣∫ b

a
f(x)e−

S(x)
ε dx

∣∣∣∣ =
∣∣∣∣∫ b

a
f(x)e−

S(x)
ε0 e

−
“
S(x)
ε
−S(x)

ε0

”
dx

∣∣∣∣
≤ e−m

“
1
ε
− 1
ε0

” ∫ b

a
|f(x)|e−

S(x)
ε0 dx = Ae−

m
ε ,

A = e
m
ε0

∫ b

a
|f(x)|e−

S(x)
ε0 dx.

The next statement gives a rough estimate of the contribution of a minimum of the phase
function.
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Lemma 6.3.2 Let the smooth function S(x) attain a minimum m = infx∈(a,b) S(x) at an
point x0 ∈ [a, b], and the smooth function f(x) satisfies f(x0) 6= 0. Assume that the inte-
gral (6.3.1) converges for some ε0 > 0. Then for every δ > 0 and every sufficiently small
neighborhood Ux0 ⊂ [a, b] one has the estimate∣∣∣∣∣

∫
Ux0

f(x)e−
S(x)
ε dx

∣∣∣∣∣ ≥ B e−S(x0)+δ
ε (6.3.3)

for some positive constant B valid for any positive ε < ε0.

Proof: For a given δ > 0 take any neighborhood Ux0 of x0 such that

m = S(x0) ≤ S(x) ≤ S(x0) + δ and |f(x)| ≥ 1
2
|f(x0)| for x ∈ Ux0 .

Then we have∣∣∣∣∣
∫
Ux0

f(x)e−
S(x)
ε dx

∣∣∣∣∣ =
∫
Ux0

|f(x)|e−
S(x)
ε dx ≥

∫
Ux0

1
2
|f(x0)|e−

S(x)
ε dx ≥ B e−

S(x0)+δ
ε .

Lemma 6.3.3 (Localization principle) Let the integral (6.3.1) converges for some ε0 > 0.
Let the function S(x) have a unique point x0 ∈ [a, b] of absolute minimum. Assume that
f(x0) 6= 0. Then∫ b

a
f(x)e−

S(x)
ε dx =

∫
Ux0

f(x)e−
S(x)
ε dx (1 +O(εn)) ∀n ∈ Z>0 (6.3.4)

for an arbitrary small neighborhood Ux0 of the point x0.

Proof: As it follows from the second lemma for any δ > 0 and a sufficiently small neighbor-
hood of the point x0 one has an estimate∣∣∣∣∣

∫
Ux0

f(x)e−
S(x)
ε dx

∣∣∣∣∣ > B e−
S(x0)+δ

ε (6.3.5)

for some positive constant B. At the same time from the first lemma we derive the following
estimate for the integral over the complement∣∣∣∣∣

∫
[a,b]\Ux0

f(x)e−
S(x)
ε dx

∣∣∣∣∣ ≤ Ae−µε , µ = inf
x∈[a,b]\Ux0

S(x) > S(x0).

Hence the inequality (6.3.5) holds true for an arbitrary small neighborhood Ux0 of x0. Rep-
resenting ∫ b

a
f(x)e−

S(x)
ε dx =

∫
Ux0

f(x)e−
S(x)
ε dx+

∫
[a,b]\Ux0

f(x)e−
S(x)
ε dx

one arrives at the proof of (6.3.4).
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Proposition 6.3.4 Let S′(x) > 0 for all x ∈ [a, b] and f(a) 6= 0. Then∫ b

a
f(x)e−

S(x)
ε dx = ε

f(a)
S′(a)

e−
S(a)
ε (1 +O(ε)) . (6.3.6)

Proof: Doing a change of the integration variable

y = S(x)

one arrives at the integral

I(ε) =
∫ S(b)

S(a)
F (y)e−

y
ε dy, F (y) =

f(x)
S′(x)

.

Integration twice by parts yields

I(ε) = −εF (y)e−
y
ε

∣∣∣∣∣S(b)
S(a) − ε

2F ′(y)e−
y
ε

∣∣∣∣∣S(b)
S(a) + ε2

∫ S(b)

S(a)
F ′′(y)e−

y
ε dy

= ε
[
F (a) + εF ′(a)−

(
F (b) + ε F ′(b)

)
e−

S(b)−S(a)
ε

]
e−

S(a)
ε + ε2

∫ S(b)

S(a)
F ′′(y)e−

y
ε dy.

The term e−
S(b)−S(a)

ε is exponentially small for ε→ +0. The last integral can be estimated as∣∣∣∣∣ε2
∫ S(b)

S(a)
F ′′(y)e−

y
ε dy

∣∣∣∣∣ < Ae−
S(a)
ε .

This completes the proof of the proposition.

Theorem 6.3.5 (Laplace formula) Let the smooth function S(x) have a unique nondegen-
erate minimum at an internal point x0 ∈ (a, b). Then

I(ε) =

√
2π ε
S′′(x0)

f(x0)e−
S(x0)
ε (1 +O(ε)) (6.3.7)

Proof: According to the localization principle one can reduce to the integration over a small
neighborhood [a1, b1] of the point x0 ∈ (a1, b1),∫ b

a
f(x)e−

S(x)
ε dx =

∫ b1

a1

f(x)e−
S(x)
ε dx (1 +O(ε)) .

Choosing the neighborhood sufficiently small we can assume that

S(x) > S(x0), S′(x) 6= 0, x ∈ [a1, b1], x 6= x0.

On such an interval the change of variable

y =


√
S(x)− S(x0), x > x0

0, x = 0
−
√
S(x)− S(x0), x < x0
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is smooth and smoothly invertible. We arrive at the integral∫ b1

a1

f(x)e−
S(x)
ε dx = e−

S(x0)
ε

∫ B1

A1

F (y)e−
y2

ε dy,

A1 = −
√
S(a1)− S(x0), B1 =

√
S(b1)− S(x0)

F (y) =



2f(x)
√
S(x)−S(x0)

S′(x) , y > 0

f(x0)
√

2
S′′(x0) , y = 0

−2f(x)
√
S(x)−S(x0)

S′(x) , y < 0.

The last step in the proof is given by the following

Lemma 6.3.6 Let the function F (y) be smooth on the segment [A1, B1] 3 0. Then∫ B1

A1

F (y)e−
y2

ε dy =
√
π εF (0) (1 +O(ε)) . (6.3.8)

Proof: Due to the localization principle one may assume the interval [A1, B1] to be sufficiently
small in such a way that the function F (y) admits a representation

F (y) = F (0) + y F ′(0) + r(y), |r(y)| < C y2, y ∈ [A1, B1]

for some positive constant C. So∫ B1

A1

F (y)e−
y2

ε dy = F (0)
∫ B1

A1

e−
y2

ε dy + F ′(0)
∫ B1

A1

y e−
y2

ε dy +
∫ B1

A1

r(y) e−
y2

ε dy

The first and the second integral can be replaced by∫ ∞
−∞

e−
y2

ε dy =
√
π ε and

∫ ∞
−∞

y e−
y2

ε dy = 0

respectively since the contribution of the tails∫ ∞
A1

and
∫ B1

−∞

is exponentially small. The last integral can be estimated by∣∣∣∣∫ B1

A1

r(y) e−
y2

ε dy

∣∣∣∣ ≤ ∫ B1

A1

|r(y)| e−
y2

ε dy < C

∫ B1

A1

y2 e−
y2

ε dy < C

∫ ∞
−∞

y2 e−
y2

ε dy = C

√
π

2
ε3/2.

This proves the Lemma and completes the proof of the Theorem.

We leave as an exercise to generalize the Laplace formula (6.3.7) to the case of infinite
intervals.
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Let us apply the Laplace formula to the study of small viscosity solutions to the Burg-
ers equation (6.2.1). According to the previous Section the solution is proportional to the
logarithmic derivative of the function

u(x, t) =
1

2
√
π ν t

∫ ∞
−∞

e−
S(y;x,t)

ν dy

where the phase function S(y;x, t) depending on the parameters x, t is given by

S(y;x, t) =
(x− y)2

4t
+

1
2

∫ y

0
φ(y′) dy′. (6.3.9)

Here φ(x) is the initial data for the Burgers equation.

Theorem 6.3.7 Let φ(x) be a monotone increasing smooth function. Then the solution
v(x, t) to the Cauchy problem to the Burgers equation with the initial data φ(x) satisfies

|v(x, t)− w(x, t)| → 0 for ν → 0 (6.3.10)

uniformly on compact subsets of the half-plane (x, t). Here w = w(x, t) is the solution to the
Hopf equation with the same initial data:

wt + wwx = 0
(6.3.11)

w(x, 0) = φ(x).

The same asymptotics (6.3.10) holds true for monotone decreasing initial data for the times
before the time t0 of gradient catastrophe for the solution to the Hopf equation (6.3.11) pro-
vided that the derivative φ′(x) of the initial function is bounded on the real line.

Proof: The stationary point y = y(x, t) of the phase function is determined from the equation

Sy(y;x, t) =
y − x

2t
+

1
2
φ(y) = 0

equivalent to
x = y + t φ(y). (6.3.12)

For t = 0 the solution is unique, y(x, 0) = x. For a monotone increasing function φ the
solution remains a unique one also for all t > 0 since the y-derivative of the equation (6.3.12)
remains positive for all y ∈ R. This stationary point is a nondegenerate minimum. Indeed,
the second derivative at the stationary point is always positive

Syy(y(x, t);x, t) =
1 + t φ′(y)

2t
> 0.

Applying the Laplace formula one obtains

u(x, t) =
1√

1 + t φ′(y)
e−

S(y(x,t);x,t)
ν (1 +O(ν)) .
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Taking the logarithmic derivative yields

v(x, t) = −2ν
∂u(x, t)
∂t

= 2Sx(y(x, t);x, t) +O(ν) = φ(y(x, t)) +O(ν).

It remains to observe that the function w = φ(y(x, t)) satisfies the implicit function equation

x = f(w) + t w

where, as above, the function f is inverse to φ. Thus w = w(x, t) coincides with the solution
to the Cauchy problem (6.3.11).

For the case of monotone decreasing initial function φ(x) with bounded derivative φ′(x)
all above arguments remain valid for small times, t < t0, where t0 is the time of the gradient
catastrophe for the solution to the Cauchy problem (6.3.11).

At the end of this Section let us give, without proof, the complex version of the Laplace
formula. This is the so-called stationary phase formula for the asymptotics of the integrals
with complex phase function

I(ε) =
∫ b

a
f(x)e

i S(x)
ε dx. (6.3.13)

Like in the case of Laplace integrals the localization principle says that the main contribution
to the asymptotics comes from the stationary points of the phase function S(x) and from
the boundary of the integration segment. However, differently from the Laplace method, the
stationary phase asymptotics involve contributions from all stationary points of the phase
function, not only from the minima. More precisely,

Proposition 6.3.8 Let f(x), S(x) be C∞ functions, such that f(x) vanishes at the boundary
of the segment [a, b] with all derivatives, and S′(x) 6= 0 ∀x ∈ [a, b]. Then∫ b

a
f(x)e

i S(x)
ε dx = O (εn) ∀n ∈ Z>0.

Proposition 6.3.9 Let f(x), S(x) be C∞ functions, such that f(x) vanishes at the boundary
of the segment [a, b] with all derivatives, and S(x) has a unique nondegenerate stationary
point x0 ∈ (a, b). Then∫ b

a
f(x)e

i S(x)
ε dx =

√
2π ε
|S′′(x0)|

e
i S(x0)

ε
+ i π

4
signS′′(x0) (f(x0) +O(ε)) . (6.3.14)

The crucial step in the derivation of the stationary phase formula is in the computation
of the following integral.

Exercise 6.3.10 Prove that ∫ 1

−1
e
ix2

ε dx =
√
π ε e

iπ
4 (1 +O(ε)) . (6.3.15)
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6.4 Dispersive waves. Solitons for KdV

We are now in a position to explain the effect of dispersion in the theory of linear waves. Let
us assume that a linear PDE admits plane wave solutions

v(x, t) = a ei(kx−ω(k)t) (6.4.1)

for any real k. Moreover we assume that the dispersion law

ω = ω(k) (6.4.2)

is a real valued function satisfying

ω′′(k) 6= 0 for k 6= 0. (6.4.3)

These assumptions hold true, e.g., for the linearized KdV equation (6.2.7) where

ω(k) = c k − ε2k3.

Another example is given by the Klein–Gordon equation

vtt − vxx +m2v = 0. (6.4.4)

In this case the dispersion relation splits into two branches

ω(k) = ±
√
k2 +m2. (6.4.5)

For the linear wave equation
vtt = a2vxx

the dispersion relation reads
ω(k) = ±a k.

The condition (6.4.3) does not hold.

More general solutions can be written as linear superpositions of the plane wave

v(x, t) =
∫
K
a(k)ei(kx−ω(k)t)dk (6.4.6)

where the integration is taken over a domain in the space of wave numbers. Here a(k) is the
complex amplitude of the k-th wave. Let us describe the asymptotic behaviour of the solution
(6.4.6) for large x and t. More precisely the question is: what will see the observer moving
with a constant speed c for sufficiently large time? The answer is given by the following

Lemma 6.4.1 Let us assume that the equation

c = ω′(k) (6.4.7)

has a unique root k = k0 belonging to K. Then for t→∞ the solution (6.4.6) restricted onto
the line

x = ct+ x0

behaves as follows

v(x, t) =

√
2π

t |ω′′(k0)|
a(k0)eit[ck0−ω(k0)]− iπ

4
signω′′(k0)+ik0x0

(
1 +O

(
1
t

))
. (6.4.8)
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Proof: It follows immediately from the stationary phase formula (6.3.14).

Let us apply the result of the Lemma to the case of wave-trains, i.e., solutions of the
form (6.4.6) obtained by integration over a small neighborhood of a point k∗. In this case
the remote observer will be able to detect a nonzero value of the wave only if

x

t
' ω′(k∗).

We conclude that, from the point of view of the remote observer the wave-train with the
wave number k∗ propagates with the velocity ω′(k∗). For this reason the number ω′(k∗) is
called the group velocity of the wave-train.

In short we can say that the velocity of propagation of dispersive waves depends on the
wave number.

The linearized KdV equation is an example of a dispersive system. Indeed, the group
velocity is equal to

ω′(k) = c− 3ε2k2.

That means that the rapidly oscillating (i.e., |k| >> 1) small perturbations propagate from
right to left. At the same time, as we know from the analysis of Hopf equation, the slow
varying solutions with positive magnitude propagate from left to right.

The full mathematical theory of solutions to the KdV equation is too complicated to
present it here. Here we will present only a small output of this theory describing an important
class of particular solutions to the KdV equation. They are created by a balance between the
nonlinear and dispersive effects. The idea is to look for solutions in the form of simple waves

v(x, t) = V

(
x− ct
ε

)
. (6.4.9)

Substitution to (6.2.2) yields an ODE for the function V = V (X)

−c V ′ + V V ′ + V ′′′ = 0.

Integrating one obtains a second order ODE

V ′′ +
1
2
V 2 − c V = a (6.4.10)

where a is an integration constant. This equation can be interpreted as the Newton law for
the motion of a particle in the field of a cubic potential

V ′′ = −∂P (V )
∂V

, P (V ) =
1
6
V 3 − c

2
V 2 − a V. (6.4.11)

One should expect to apply the law of conservation of energy to integration of this equation.
Indeed, after multiplication of (6.4.10) by V ′ one can integrate once more to arrive at a first
order equation

1
2
V ′

2 +
1
6
V 3 − c

2
V 2 − a V = b
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where b is another integration constant (the total energy of the system (6.4.11)). The last
equation can be integrated by quadratures

X −X0 =
∫

dV√
2
(
−1

6V
3 + c

2V
2 + a V + b

) . (6.4.12)

For general values of the constants a, b, c the solution (6.4.12) can be expressed via elliptic
functions. We will now determine the values of these parameters that allow a reduction to
elementary functions. This can happen when the cubic polynomial under the square root has
a multiple root. Moreover we will assume that this double root is at V = 0. To meet such a
requirement one must have

a = b = 0.

We arrive at computation of the integral

X −X0 =
∫

dV

V
√
c− 1

3V
= − 2√

c
tanh−1

√
c− V

3√
c

Inverting one obtains

V = 3c
(

1− tanh2

√
c(X −X0)

2

)
=

3c

cosh2
√
c(X−X0)

2

We arrive at the following family of solutions to the KdV equation

v(x, t) =
3k2

cosh2 k(x−x0)−k3t
2ε

(6.4.13)

where we put k =
√
c.

Fig. 10. Soliton solutions to the KdV equation with t = 0, k = 1 for various values of ε
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6.5 Exercises to Section 6

Exercise 6.5.1 Derive the following formula for the solution to the Cauchy problem

δv(x, 0) = φ(x)

for the linearized Burgers equation (6.2.4):

δv(x, t) =
1

2
√
π ν t

∫ ∞
−∞

e−
(x−y−ct)2

4ν t φ(y) dy.

Exercise 6.5.2 Obtain the following representation for solutions to the linearized KdV equa-
tion (6.2.7) with the initial data δv(x, 0) = φ(x) rapidly decreasing at |x| → ∞:

δv(x, t) =
∫ ∞
−∞

A(x− y − c t, ε2t)φ(y) dy

where
A(x, t) =

1
2π

∫ ∞
−∞

ei(k x+k3t)dk. (6.5.1)

The integral (6.5.1) can be expressed via Airy function

A(x, t) =
1

(3t)1/3
Ai

(
x

(3t)1/3

)
defined by the integral

Ai(x) =
1

2π

∫ ∞
−∞

e
i
“
s x+ s3

3

”
ds.
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Fig. 11. Graph of Airy function

Exercise 6.5.3 Derive the following Stirling formula for the asymptotics of gamma function

Γ(x+ 1) =
∫ ∞

0
txe−tdt =

√
2π x

(x
e

)x(
1 +O

(
1
x

))
, x→ +∞. (6.5.2)

Hint: after the substitution t = x s the integral rewrites as follows

Γ(x+ 1) = xx+1

∫ ∞
0

e−x(s−log s)ds.
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