You are here


Advanced Programming

The course aims to provide advanced knowledge of both theoretical and practical programming in C++14 and Python3, particularly the principles of object-oriented programming and best practices of software development.


Topics in Computational Fluid Dynamics

  • Introduction to CFD, examples.
  • Constitutive laws
  • Incompressible flows.
  • Numerical methods for potential and thermal flows
  • Boundary layer theory

Computational Mechanics by Reduced Order Methods

Lectures Prof Gianluigi Rozza, Tutorials coordinated by Dr Giovanni Stabile,  Dr Francesco Ballarin, Dr Maria Strazzullo and Dr Federico Pichi

Learning outcomes and objectives

The course aims to provide the basic aspects of numerical approximation and efficient solution of parametrized PDEs for computational mechanics problem (heat and mass transfer, linear elasticity, viscous and potential flows) using reduced order methods.

Advanced Topics in CFD

The course deals with a list of advanced topics in computational fluid dynamics. In the first part, the governing equations governing fluid dynamics problems are reviewed and derived. Both compressible and incompressible flows are considered. The basics of the finite volume methods for the numerical discretization of fluid dynamics problems are reviewed and discussed starting from the basic example of an advection-diffusion equation.

Topics in Continuum Mechanics

  • Reminders on linear algebra and tensor calculus
  • Kinematics of deformable bodies
  • Eulerian and Lagrangian descriptions of motion
  • Balance laws of continuum mechanics: conservation of mass, balance of linear and angular momentum, energy balance and dissipation inequality
  • Constitutive equations
  • Fluid dynamics: the Navier Stokes equations
  • Solid mechanics: nonlinear and linearized elasticity
  • Selected topics from the mechanics of biological systems



Sign in