MENU

You are here

Massimiliano Berti

Export 54 results:
Filters: Author is Massimiliano Berti
Journal Article
Berti M. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
Berti M, Franzoi L, Maspero A. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
Berti M, Feola R, Procesi M, Terracina S. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
Berti M, Maspero A, Ventura P. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
Berti M, Langella B, Silimbani D. Time periodic solutions of completely resonant Klein-Gordon equations on $\mathbbS^3$. Ann. Inst. H. Poincaré C Anal. Non Linéaire . 2024 .
Asselle L, Benedetti G, Berti M. Zoll magnetic systems on the two-torus: A Nash–Moser construction. Advances in Mathematics [Internet]. 2024 ;452:109826. Available from: https://www.sciencedirect.com/science/article/pii/S0001870824003414
Berti M, Maspero A, Ventura P. Benjamin-Feir instability of Stokes waves in finite depth. Arch. Ration. Mech. Anal. [Internet]. 2023 ;247:Paper No. 91, 54. Available from: https://doi.org/10.1007/s00205-023-01916-2
Berti M, Feola R, Pusateri F. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
Berti M, Maspero A, Murgante F. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
Berti M, Cuccagna S, Gancedo F, Scrobogna S. Paralinearization and extended lifespan for solutions of the $ α$-SQG sharp front equation. [Internet]. 2023 . Available from: https://arxiv.org/abs/2310.15963
Berti M, Hassainia Z, Masmoudi N. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
Berti M, Maspero A, Ventura P. On the analyticity of the Dirichlet-Neumann operator and Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:611–650. Available from: https://doi.org/10.4171/rlm/983
Berti M, Maspero A, Ventura P. Benjamin-Feir instability of Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:399–412. Available from: https://doi.org/10.4171/rlm/975
Berti M, Maspero A, Ventura P. Full description of Benjamin-Feir instability of Stokes waves in deep water. Invent. Math. [Internet]. 2022 ;230:651–711. Available from: https://doi.org/10.1007/s00222-022-01130-z
Berti M, Maspero A, Murgante F. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
Berti M, Maspero A, Murgante F. Local well posedness of the Euler-Korteweg equations on {$\Bbb T^d$}. Journal of Dynamics and Differential Equations [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
Berti M, Feola R, Franzoi L. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
Berti M, Franzoi L, Maspero A. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
Journal Article
Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from: http://urania.sissa.it/xmlui/handle/1963/35067
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
Berti M, Biasco L, Procesi M. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.

Pages

Sign in