Title | Convergence of equilibria of planar thin elastic beams |
Publication Type | Journal Article |
Year of Publication | 2007 |
Authors | Mora, MG, Müller, S, Schultz, MG |
Journal | Indiana Univ. Math. J. 56 (2007) 2413-2438 |
Abstract | We consider a thin elastic strip of thickness h and we show that stationary points of the nonlinear elastic energy (per unit height) whose energy is of order h^2 converge to stationary points of the Euler-Bernoulli functional. The proof uses the rigidity estimate for low-energy deformations by Friesecke, James, and Mueller (Comm. Pure Appl. Math. 2002), and a compensated compactness argument in a singular geometry. In addition, possible concentration effects are ruled out by a careful truncation argument. |
URL | http://hdl.handle.net/1963/1830 |
DOI | 10.1512/iumj.2007.56.3023 |
Research Group: