MENU

You are here

Publications

Export 1850 results:
Filters: Filter is   [Clear All Filters]
2020
Karatzas EN, Stabile G, Atallah N, Scovazzi G, Rozza G. A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries. In: Fehr J, Haasdonk B IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer International Publishing; 2020. Available from: https://arxiv.org/abs/1807.07753
Garotta F, Demo N, Tezzele M, Carraturo M, Reali A, Rozza G. Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
Zainib Z, Ballarin F, Fremes SE, Triverio P, Jiménez-Juan L, Rozza G. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. International Journal for Numerical Methods in Biomedical EngineeringInternational Journal for Numerical Methods in Biomedical EngineeringInt J Numer Meth Biomed Engng [Internet]. 2020 ;n/a(n/a):e3367. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R
Pichi F, Quaini A, Rozza G. A reduced order modeling technique to study bifurcating phenomena: Application to the gross-pitaevskii equation. SIAM Journal on Scientific Computing [Internet]. 2020 . Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096768803&doi=10.1137%2f20M1313106&partnerID=40&md5=47d6012d10854c2f9a04b9737f870592
Pichi F, Quaini A, Rozza G. A Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation. SIAM Journal on Scientific Computing [Internet]. 2020 . Available from: https://arxiv.org/abs/1907.07082
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2020 ;370. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d8
Magnani V, Tiberio D. A remark on vanishing geodesic distances in infinite dimensions. Proceedings of the American Mathematical Society [Internet]. 2020 ;148:3653–3656. Available from: http://dx.doi.org/10.1090/proc/14986
Perotto S, Rozza G. Special Issue on Reduced Order Models in CFD. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:91-92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084258805&doi=10.1080%2f10618562.2020.1756497&partnerID=40&md5=d9316aad9ba95f244e07379318ebbcba
Hess MW, Quaini A, Rozza G. A spectral element reduced basis method for navier–stokes equations with geometric variations. Lecture Notes in Computational Science and Engineering. 2020 ;134:561-571.
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers & Mathematics with Applications [Internet]. 2020 ;80(11):2399-2416. Available from: https://www.sciencedirect.com/science/article/pii/S0898122120301231
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
Bogomolov F, Lukzen E. Stable vector bundles on the families of curves. 2020 .
Riccobelli D, Bevilacqua G. Surface tension controls the onset of gyrification in brain organoids. Journal of the Mechanics and Physics of Solids [Internet]. 2020 ;134:103745. Available from: http://www.sciencedirect.com/science/article/pii/S0022509619304065
Andrini D, Lucantonio A, Noselli G. A Theoretical Study on the Transient Morphing of Linear Poroelastic Plates. Journal of Applied Mechanics [Internet]. 2020 ;88. Available from: https://doi.org/10.1115/1.4048806
Smirnov G, Torres R. Topology change and selection rules for high-dimensional spin(1,n)0-Lorentzian cobordisms. Transactions of the american mathematical society [Internet]. 2020 ;373(3):1731-1747. Available from: http://hdl.handle.net/20.500.11767/108858
Han X. Twisted Ehresmann Schauenburg bialgebroids.; 2020. Available from: https://arxiv.org/abs/2009.02764
Pratelli A, Saracco G. The $\varepsilon-\varepsilon^β$ property in the isoperimetric problem with double density, and the regularity of isoperimetric sets. Adv. Nonlinear Stud. 2020 ;20:539–555.
Tasso E. Weak formulation of elastodynamics in domains with growing cracks. [Internet]. 2020 ;199(4):1571 - 1595. Available from: https://doi.org/10.1007/s10231-019-00932-y
2021
Cangiani A, Georgoulis EH, Sutton OJ. Adaptive non-hierarchical Galerkin methods for parabolic problems with application to moving mesh and virtual element methods. Mathematical Models and Methods in Applied Sciences [Internet]. 2021 ;31:711-751. Available from: https://doi.org/10.1142/S0218202521500172
Bonito A, Lei W. Approximation of the spectral fractional powers of the Laplace-Beltrami Operator. arXiv preprint arXiv:2101.05141. 2021 .
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
Corsi G. Asymptotic approach to a rotational Taylor swimming sheet. Comptes Rendus. Mécanique. 2021 ;349:103–116.
Romor F, Tezzele M, Rozza G. ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts. 2021 ;10:100133.
Berti M, Feola R, Pusateri F. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
Andreuzzi F. BisPy: Bisimulation in Python. Journal of Open Source Software. 2021 ;6:3519.

Pages

Sign in