Export 113 results:
Filters: Author is Gianni Dal Maso [Clear All Filters]
Shape optimization for Dirichlet problems: relaxed formulations and optimally conditions. Appl.Math.Optim. 23 (1991), no.1, p. 17-49. [Internet]. 1991 . Available from: http://hdl.handle.net/1963/880
. Second Order Asymptotic Development for the Anisotropic Cahn-Hilliard Functional. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7390
. Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 741-808 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1236
. Quasistatic Limit of a Dynamic Viscoelastic Model with Memory. [Internet]. 2021 . Available from: https://doi.org/10.1007/s00032-021-00343-w
. Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1962
. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2129
. Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes. Journal of Dynamics and Differential Equations [Internet]. 2014 ;26:915–954. Available from: https://doi.org/10.1007/s10884-014-9409-7
. Quasi-static evolution in brittle fracture: the case of bounded solutions. Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2229
. Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heterog. Media 5 (2010) 97-132 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3671
. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
. Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2293
. Quasi-static crack growth in hydraulic fracture. Nonlinear Analysis [Internet]. 2014 ;109(Nov):301-318. Available from: http://hdl.handle.net/20.500.11767/17350
. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 257-290 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3397
. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867-906 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2964
. . A pointwise regularity theory for the two-obstacle problem. Acta Math. 163 (1989), no. 1-2, 57-107 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/643
. One-dimensional swimmers in viscous fluids: dynamics, controllability, and existence of optimal controls. [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6467
. A numerical study of the jerky crack growth in elastoplastic materials with localized plasticity. Journal of Convex Analysis [Internet]. 2020 . Available from: https://arxiv.org/abs/2004.12705
. On a notion of unilateral slope for the Mumford-Shah functional. NoDEA 13 (2007) 713-734 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2059
. Nonlocal character of the reduced theory of thin films with higher order perturbations. Adv. Calc. Var. 3 (2010) 287-319 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3754
. New results on Gamma-limits of integral functionals. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/5880
. A monotonicity approach to nonlinear Dirichlet problems in perforated domains. Adv. Math. Sci. Appl. 11 (2001) 721-751 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1555
. .