You are here


Export 437 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Bertola M, El G, Tovbis A. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from:
Bertola M, Cafasso M. Darboux Transformations and Random Point Processes. IMRN. 2014 ;rnu122:56.
Bertola M, Eynard B, Harnad J. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
Bertola M. On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity [Internet]. 2012 ;25:1179–1185. Available from:
Bertola M. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
Bertola M. Frobenius manifold structure on orbit space of Jacobi groups. II. Differential Geom. Appl. 2000 ;13:213–233.
Bertola M, Dubrovin B, Yang D. Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline\CalM_g,n$. Phys. D [Internet]. 2016 ;327:30–57. Available from:
Bertola M, Mo MY. Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights. Adv. Math. 2009 ;220:154–218.
Bertola M, Tovbis A. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from:
Bertola M, Ferrer APrats. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
Berti M, Biasco L. Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from:
Berti M, Maspero A, Ventura P. Stokes waves at the critical depth are modulational unstable.; 2023.
Berti M, Bolle P, Procesi M. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
Berti M, Carminati C. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from:
Berti M. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
Berti M, Bolle P. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. 56 (2004) 1011-1046 [Internet]. 2004 . Available from:
Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
Berti M, Franzoi L, Maspero A. Traveling Quasi-periodic Water Waves with Constant Vorticity. [Internet]. 2021 ;240(1):99 - 202. Available from:
Berti M, Matzeu M, Valdinoci E. On periodic elliptic equations with gradient dependence. Communications on Pure and Applied Analysis. 2008 ;7:601-615.
Berti M, Bolle P. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. 8 (2002) 795-811 [Internet]. 2002 . Available from:
Berti M, Maspero A, Ventura P. Benjamin-Feir Instability of Stokes Waves in Finite Depth. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. 2023 ;247:91.
Berti M, Procesi M. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 109-116 [Internet]. 2005 . Available from:
Berti M, Bolle P. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincare Anal. Non Lineaire 19 (2002) 395-450 [Internet]. 2002 . Available from:
Berti M, Procesi M. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
Berti M, Kappeler T, Montalto R. Large KAM tori for perturbations of the dNLS equation.; 2016. Available from:


Sign in