Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Large KAM tori for perturbations of the defocusing NLS equation. Astérisque. 2018 :viii+148.
. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. [Internet]. 2015 ;334:1413–1454. Available from: https://doi.org/10.1007/s00220-014-2128-4
. Benjamin-Feir instability of Stokes waves in finite depth. Arch. Ration. Mech. Anal. [Internet]. 2023 ;247:Paper No. 91, 54. Available from: https://doi.org/10.1007/s00205-023-01916-2
. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. [Internet]. 2004 ;56:1011–1046. Available from: https://doi.org/10.1016/j.na.2003.11.001
. Diffusion time and splitting of separatrices for nearly integrable. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2000, 11, 235 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1547
. Large KAM tori for quasi-linear perturbations of KdV. Arch. Ration. Mech. Anal. [Internet]. 2021 ;239:1395–1500. Available from: https://doi.org/10.1007/s00205-020-01596-2
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Nonlinear vibrations of completely resonant wave equations. In: Fixed point theory and its applications. Vol. 77. Fixed point theory and its applications. Polish Acad. Sci. Inst. Math., Warsaw; 2007. pp. 49–60. Available from: https://doi.org/10.4064/bc77-0-4
. Full description of Benjamin-Feir instability of Stokes waves in deep water. Invent. Math. [Internet]. 2022 ;230:651–711. Available from: https://doi.org/10.1007/s00222-022-01130-z
. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
. KAM theory for partial differential equations. Anal. Theory Appl. [Internet]. 2019 ;35:235–267. Available from: https://doi.org/10.4208/ata.oa-0013
. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. A Nash-Moser approach to KAM theory. In: Hamiltonian partial differential equations and applications. Vol. 75. Hamiltonian partial differential equations and applications. Fields Inst. Res. Math. Sci., Toronto, ON; 2015. pp. 255–284. Available from: https://doi.org/10.1007/978-1-4939-2950-4_9
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
.