Export 473 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. . KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2160
. Benjamin-Feir instability of Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:399–412. Available from: https://doi.org/10.4171/rlm/975
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. Large KAM tori for perturbations of the defocusing NLS equation. Astérisque. 2018 :viii+148.
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
. Paralinearization and extended lifespan for solutions of the $ α$-SQG sharp front equation. [Internet]. 2023 . Available from: https://arxiv.org/abs/2310.15963
. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. [Internet]. 2015 ;334:1413–1454. Available from: https://doi.org/10.1007/s00220-014-2128-4
. Benjamin-Feir instability of Stokes waves in finite depth. Arch. Ration. Mech. Anal. [Internet]. 2023 ;247:Paper No. 91, 54. Available from: https://doi.org/10.1007/s00205-023-01916-2
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. [Internet]. 2004 ;56:1011–1046. Available from: https://doi.org/10.1016/j.na.2003.11.001
. Large KAM tori for quasi-linear perturbations of KdV. Arch. Ration. Mech. Anal. [Internet]. 2021 ;239:1395–1500. Available from: https://doi.org/10.1007/s00205-020-01596-2
. . Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Nonlinear vibrations of completely resonant wave equations. In: Fixed point theory and its applications. Vol. 77. Fixed point theory and its applications. Polish Acad. Sci. Inst. Math., Warsaw; 2007. pp. 49–60. Available from: https://doi.org/10.4064/bc77-0-4
. Full description of Benjamin-Feir instability of Stokes waves in deep water. Invent. Math. [Internet]. 2022 ;230:651–711. Available from: https://doi.org/10.1007/s00222-022-01130-z
. A functional analysis approach to Arnold diffusion. In: Symmetry and perturbation theory (Cala Gonone, 2001). Symmetry and perturbation theory (Cala Gonone, 2001). World Sci. Publ., River Edge, NJ; 2001. pp. 29–31. Available from: https://doi.org/10.1142/9789812794543_0004
.