MENU

You are here

Publications

Export 1845 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bertola M. Bilinear semiclassical moment functionals and their integral representation. J. Approx. Theory. 2003 ;121:71–99.
DeSimone A, Alouges F, Lefebvre A. Biological Fluid Dynamics, Non-linear Partial Differential Equations. In: Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554. ; 2009. Available from: http://hdl.handle.net/1963/2630
Bertola M, Gekhtman M. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
Bertola M. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
Massarenti A. Biregular and Birational Geometry of Algebraic Varieties. 2013 .
Berti M, Feola R, Pusateri F. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
Berti M, Feola R, Pusateri F. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
Bambusi D, Berti M. A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs. SIAM J. Math. Anal. 37 (2006) 83-102 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2159
Agrachev AA, Lee P. Bishop and Laplacian Comparison Theorems on Three Dimensional Contact Subriemannian Manifolds with Symmetry. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6508
Andreuzzi F. BisPy: Bisimulation in Python. Journal of Open Source Software. 2021 ;6:3519.
Griguolo L, Seminara D, Szabo RJ, Tanzini A. Black Holes, Instanton Counting on Toric Singularities and q-Deformed Two-Dimensional Yang-Mills Theory.; 2007. Available from: http://hdl.handle.net/1963/1888
Giuliani N. BlackNUFFT: Modular customizable black box hybrid parallelization of type 3 NUFFT in 3D. Computer Physics Communications [Internet]. 2019 ;235:324 - 335. Available from: http://www.sciencedirect.com/science/article/pii/S0010465518303539
Gadalla M, Tezzele M, Mola A, Rozza G. BladeX: Python Blade Morphing. The Journal of Open Source Software. 2019 ;4:1203.
Jenssen HK, Sinestrari C. Blowup asymptotics for scalar conservation laws with a source. Comm. in Partial Differential Equations 24 (1999) 2237-2261 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3482
Bressan A, Fonte M. On the Blow-up for a Discrete Boltzmann Equation in the Plane. Discrete Contin. Dyn. Syst. 13 (2005) 1-12 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2244
Tasso E. On the blow-up of GSBV functions under suitable geometric properties of the jump set. Advances in Calculus of Variations [Internet]. 2020 . Available from: https://doi.org/10.1515/acv-2019-0068
Adami R, Dell'Antonio G, Figari R, Teta A. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 121-137 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2998
Franco D, Reina C. A Borel-Weil-Bott approach to representations of \rm sl\sb q(2,C). Lett. Math. Phys. 29 (1993) 215-217 [Internet]. 1993 . Available from: http://hdl.handle.net/1963/3538
Michelangeli A. Born approximation in the problem of the rigorous derivation of the Gross-Pitaevskii equation.; 2006. Available from: http://hdl.handle.net/1963/1819
Michelangeli A. Bose-Einstein condensation: analysis of problems and rigorous results.; 2007. Available from: http://hdl.handle.net/1963/2189
Ambrosetti A, Colorado E. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
Ambrosetti A, Malchiodi A, Ruiz D. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
Lassila T, Manzoni A, Quarteroni A, Rozza G. Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. Mathematical Modelling and Numerical Analysis, in press, 2012-13 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6337
Bressan A, Coclite GM. On the Boundary Control of Systems of Conservation Laws. SIAM J. Control Optim. 41 (2002) 607-622 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3070
Malchiodi A, Wei J. Boundary interface for the Allen-Cahn equation. J. Fixed Point Theory Appl. 1 (2007) 305-336 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2027

Pages

Sign in