Export 475 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Forced vibrations of wave equations with non-monotone nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 439-474 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2160
. Hamiltonian paradifferential Birkhoff normal form for water waves. Regul. Chaotic Dyn. [Internet]. 2023 ;28:543–560. Available from: https://doi.org/10.1134/S1560354723040032
. Some remarks on a variational approach to Arnold's diffusion. Discrete Contin. Dynam. Systems [Internet]. 1996 ;2:307–314. Available from: https://doi.org/10.3934/dcds.1996.2.307
. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. On periodic elliptic equations with gradient dependence. Commun. Pure Appl. Anal. [Internet]. 2008 ;7:601–615. Available from: https://doi.org/10.3934/cpaa.2008.7.601
. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dyn. Syst. [Internet]. 2002 ;8:795–811. Available from: https://doi.org/10.3934/dcds.2002.8.795
. On the analyticity of the Dirichlet-Neumann operator and Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:611–650. Available from: https://doi.org/10.4171/rlm/983
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence. Annals of PDEs [Internet]. 2022 . Available from: https://arxiv.org/abs/2212.12255
. Long time dynamics of Schrödinger and wave equations on flat tori. J. Differential Equations [Internet]. 2019 ;267:1167–1200. Available from: https://doi.org/10.1016/j.jde.2019.02.004
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. Periodic solutions of Hamiltonian PDEs. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8). 2004 ;7:647–661.
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
. Almost global solutions of capillary-gravity water waves equations on the circle. Springer, Cham; Unione Matematica Italiana, [Bologna]; 2018 p. x+268. Available from: https://doi.org/10.1007/978-3-319-99486-4
.