.
An optimisation–based domain–decomposition reduced order model for parameter–dependent non–stationary fluid dynamics problems. Computers & Mathematics with Applications [Internet]. 2024 ;166:253-268. Available from: https://www.sciencedirect.com/science/article/pii/S0898122124002098
. .
An optimisation–based domain–decomposition reduced order model for the incompressible Navier-Stokes equations. [Internet]. 2023 ;151:172 - 189. Available from: https://www.sciencedirect.com/science/article/pii/S0898122123004248
. A comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutions. ETNA - Electronic Transactions on Numerical Analysis. 2022 ;56:52–65.
. . . Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
. Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering. 2022 ;123:6000-6027.
. Model order reduction for bifurcating phenomena in fluid-structure interaction problems. International Journal for Numerical Methods in FluidsInternational Journal for Numerical Methods in FluidsInt J Numer Meth Fluids [Internet]. 2022 ;n/a(n/a). Available from: https://doi.org/10.1002/fld.5118
. Model Reduction Using Sparse Polynomial Interpolation for the Incompressible Navier-Stokes Equations. 2022 .
. The Neural Network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2022 ;392. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124488633&doi=10.1016%2fj.cma.2022.114687&partnerID=40&md5=12f82dcaba04c4a7c44f8e5b20101997
. A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation. [Internet]. 2022 :105536. Available from: https://www.sciencedirect.com/science/article/pii/S0045793022001645
. . A Proper Orthogonal Decomposition Approach for Parameters Reduction of Single Shot Detector Networks. In: 2022 IEEE International Conference on Image Processing (ICIP). 2022 IEEE International Conference on Image Processing (ICIP). ; 2022.
. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
. ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts. 2021 ;10:100133.
. . On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from: https://www.sciencedirect.com/science/article/pii/S0045793020303893
. . . . Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. In: Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021.
. A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. arXiv preprint arXiv:2110.09155. 2021 .
. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics. 2021 ;47.
.