Title | On functions having coincident p-norms |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | Klun, G |
Journal | Annali di Matematica Pura ed Applicata (1923 -) |
Volume | 199 |
Pagination | 955-968 |
Abstract | In a measure space $(X,{\mathcal {A}},\mu )$, we consider two measurable functions $f,g:E\rightarrow {\mathbb {R}}$, for some $E\in {\mathcal {A}}$. We prove that the property of having equal p-norms when p varies in some infinite set $P\subseteq [1,+\infty )$ is equivalent to the following condition: $\begin{aligned} \mu (\{x\in E:|f(x)|>\alpha \})=\mu (\{x\in E:|g(x)|>\alpha \})\quad \text { for all } \alpha \ge 0. \end{aligned}$ |
URL | https://doi.org/10.1007/s10231-019-00907-z |
DOI | 10.1007/s10231-019-00907-z |
Research Group: