Title | SBV regularity for Hamilton-Jacobi equations in R^n |
Publication Type | Journal Article |
Year of Publication | 2011 |
Authors | Bianchini, S, De Lellis, C, Robyr, R |
Journal | Arch. Rational Mech. Anal. 200 (2011) 1003-1021 |
Abstract | In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations $$ \partial_t u + H(D_{x} u)=0 \qquad \textrm{in}\quad \Omega\subset \mathbb{R}\times \mathbb{R}^{n} . $$ In particular, under the assumption that the Hamiltonian $H\in C^2(\mathbb{R}^n)$ is uniformly convex, we prove that $D_{x}u$ and $\partial_t u$ belong to the class $SBV_{loc}(\Omega)$. |
URL | http://hdl.handle.net/1963/4911 |
DOI | 10.1007/s00205-010-0381-z |
Research Group: