MENU

You are here

SBV regularity for Hamilton-Jacobi equations in R^n

TitleSBV regularity for Hamilton-Jacobi equations in R^n
Publication TypeJournal Article
Year of Publication2011
AuthorsBianchini, S, De Lellis, C, Robyr, R
JournalArch. Rational Mech. Anal. 200 (2011) 1003-1021
Abstract

In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations $$ \partial_t u + H(D_{x} u)=0 \qquad \textrm{in}\quad \Omega\subset \mathbb{R}\times \mathbb{R}^{n} . $$ In particular, under the assumption that the Hamiltonian $H\in C^2(\mathbb{R}^n)$ is uniformly convex, we prove that $D_{x}u$ and $\partial_t u$ belong to the class $SBV_{loc}(\Omega)$.

URLhttp://hdl.handle.net/1963/4911
DOI10.1007/s00205-010-0381-z

Sign in