Title | A weighted empirical interpolation method: A priori convergence analysis and applications |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Chen, P, Quarteroni, A, Rozza, G |
Abstract | We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667-672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis is provided for the proposed method and the error bound by Kolmogorov N-width is improved from the recent work [Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383-404]. We apply our method to geometric Brownian motion, exponential Karhunen-Loève expansion and reduced basis approximation of non-affine stochastic elliptic equations. We demonstrate its improved accuracy and efficiency over the empirical interpolation method, as well as sparse grid stochastic collocation method. |
URL | http://urania.sissa.it/xmlui/handle/1963/35021 |
DOI | 10.1051/m2an/2013128 |
A weighted empirical interpolation method: A priori convergence analysis and applications
Research Group: