On the Minimum Problem for Nonconvex Scalar Functionals. SIAM J. Math. Anal. 37 (2005) 982-995 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2764
. Modulation of the Camassa-Holm equation and reciprocal transformations. Ann. Inst. Fourier (Grenoble) 55 (2005) 1803-1834 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2305
. Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. H. Poincare Anal. Non Lineaire 22 (2005) 143-163 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3532
. Matching Procedure for the Sixth Painlevé Equation (May 2006). Journal of Physics A: Mathematical and General, Volume 39, Issue 39, 29 September 2006, Article numberS02, Pages 11973-12031 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/6524
. Massless scalar field in a two-dimensional de Sitter universe. In: Rigorous quantum field theory. Vol. 251. Rigorous quantum field theory. Basel: Birkhäuser; 2007. pp. 27–38.
. On the Maz\\\'ya inequalities: existence and multiplicity results for an elliptic problem involving cylindrical weights.; 2007. Available from: http://hdl.handle.net/1963/2522
. Metrics on semistable and numerically effective Higgs bundles. J. Reine Angew. Math. 612 (2007) 59-79 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1840
. . Minimization of non quasiconvex functionals by integro-extremization method. Discrete Contin. Dyn. Syst. 21 (2008) 625-641 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2761
. Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations. Calc. Var. Partial Differential Equations 31 (2008) 511-519 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2760
. Morse theory and a scalar field equation on compact surfaces. Adv. Differential Equations 13 (2008) 1109-1129 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3531
. Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2679
. Mesoscopic colonization in a spectral band. J. Phys. A [Internet]. 2009 ;42:415204, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/41/415204
. Minimal disc-type surfaces embedded in a perturbed cylinder. Differential and Integral Equations [Internet]. 2009 ;22:1115–1124. Available from: https://projecteuclid.org/euclid.die/1356019407
. A model for the dynamics of rowing boats. International Journal for Numerical Methods in Fluids [Internet]. 2009 ;61:119–143. Available from: https://doi.org/10.1002/fld.1940
. A model for the orbifold Chow ring of weighted projective spaces. Comm. Algebra 37 (2009) 503-514 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3589
. Moment determinants as isomonodromic tau functions. Nonlinearity. 2009 ;22:29–50.
. mRNA stability and the unfolding of gene expression in the long-period yeast metabolic cycle. BMC Systems Biology (2009) 3:18 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3630
. Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks. BMC Systems Biology 2010, 4:83 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4055
. . The matching property of infinitesimal isometries on elliptic surfaces and elasticity on thin shells. Archive for Rational Mechanics and Analysis 200 (2011) 1023-1050 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3392
. Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Continuum Mechanics and Thermodynamics [Internet]. 2011 ;23:453–471. Available from: https://doi.org/10.1007/s00161-011-0189-6
. A MODEL FOR CRACK PROPAGATION BASED ON VISCOUS APPROXIMATION. {MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES}. 2011 ;{21}:{2019-2047}.
. Moduli of framed sheaves on projective surfaces. Doc. Math. 16 (2011) 399-410 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5126
. The Monge Problem in Geodesic Spaces. In: Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications. Boston, MA: Springer US; 2011. pp. 217–233.
.