Export 480 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Almost global solutions of capillary-gravity water waves equations on the circle. Springer, Cham; Unione Matematica Italiana, [Bologna]; 2018 p. x+268. Available from: https://doi.org/10.1007/978-3-319-99486-4
. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
. Nonlinear oscillations of Hamiltonian PDEs. Birkhäuser Boston, Inc., Boston, MA; 2007 p. xiv+180.
. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
. Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998 ;9:167–175.
. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from: http://dx.doi.org/10.1063/1.4922362
. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from: http://dx.doi.org/10.1088/1751-8113/42/33/335201
. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
. Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. [Internet]. 2011 ;1:167–211. Available from: http://dx.doi.org/10.1007/s13324-011-0012-3
. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from: http://dx.doi.org/10.3842/SIGMA.2016.118
. Mesoscopic colonization in a spectral band. J. Phys. A [Internet]. 2009 ;42:415204, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/41/415204
. The partition function of the extended $r$-reduced Kadomtsev-Petviashvili hierarchy. J. Phys. A [Internet]. 2015 ;48:195205, 20. Available from: http://dx.doi.org/10.1088/1751-8113/48/19/195205
. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
.