Export 480 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys. [Internet]. 2003 ;243:315–328. Available from: https://doi.org/10.1007/s00220-003-0972-8
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. . Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Benjamin-Feir instability of Stokes waves. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2022 ;33:399–412. Available from: https://doi.org/10.4171/rlm/975
. Paralinearization and extended lifespan for solutions of the $ α$-SQG sharp front equation. Advances in Mathematics [Internet]. 2025 ;460. Available from: https://www.sciencedirect.com/science/article/pii/S0001870824005504
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Large KAM tori for perturbations of the defocusing NLS equation. Astérisque. 2018 :viii+148.
. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. [Internet]. 2015 ;334:1413–1454. Available from: https://doi.org/10.1007/s00220-014-2128-4
. Cubic string boundary value problems and Cauchy biorthogonal polynomials. J. Phys. A [Internet]. 2009 ;42:454006, 13. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/45/454006
. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
. CORRIGENDUM: The dependence on the monodromy data of the isomonodromic tau function. [Internet]. 2016 . Available from: http://arxiv.org/abs/1601.04790
. Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane. Symmetry, Integrability and Geometry. Methods and Applications. 2018 ;14.
. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
. Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves. Anal. Math. Phys. [Internet]. 2015 ;5:1–22. Available from: http://dx.doi.org/10.1007/s13324-014-0088-7
. Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Comm. Math. Phys. 2003 ;243:193–240.
. Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model. J. Math. Phys. 2013 ;54:043517, 25.
. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from: http://dx.doi.org/10.1007/s00220-017-2895-9
.