Export 118 results:
Filters: First Letter Of Title is M [Clear All Filters]
Modulation of the Camassa-Holm equation and reciprocal transformations. Ann. Inst. Fourier (Grenoble) 55 (2005) 1803-1834 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2305
. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering [Internet]. 2020 ;2:230. Available from: http://dx.doi.org/10.3934/mine.2020011
. Modeling and control of quantum systems: An introduction. IEEE Transactions on Automatic Control. Volume 57, Issue 8, 2012, Article number6189035, Pages 1898-1917 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6505
. Motion on submanifolds of noninvariant holonomic constraints for a kinematic control system evolving on a matrix Lie group. Syst. Control Lett. 50 (2003) 241-250 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3018
. Multiscale modeling of fiber reinforced materials via non-matching immersed methods. Computers & Structures. 2020 ;239:106334.
. Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2679
. A multiplicity result for the Yamabe problem on $S\\\\sp n$. J. Funct. Anal. 168 (1999), no. 2, 529-561 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1264
. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations.; 2007. Available from: http://hdl.handle.net/1963/1835
. Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. An., 2001, 159, 253 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1564
. Multiplicity results for the Yamabe problem on Sn. Proceedings of the National Academy of Sciences of the United States of America. 2002 Nov; 99(24):15252-6 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/5885
. Minimal partitions and image classification using a gradient-free perimeter approximation. SISSA; 2013. Available from: http://hdl.handle.net/1963/6976
. Mathematical modelling of axonal cortex contractility. Brain Multiphysics. 2022 ;2.
. .
A Moser-Trudinger inequality for the singular Toda system. Bull. Inst. Math. Acad. Sin. 2014 ;9:1–23.
. Moser–Trudinger inequalities for singular Liouville systems. Mathematische Zeitschrift [Internet]. 2016 ;282:1169–1190. Available from: https://doi.org/10.1007/s00209-015-1584-7
. Minimal Liouville gravity correlation numbers from Douglas string equation. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34588
. Minimizers of anisotropic perimeters with cylindrical norms. Communications on Pure & Applied Analysis [Internet]. 2017 ;16:1427. Available from: http://aimsciences.org//article/id/47054f15-00c7-40b7-9da1-4c0b1d0a103d
. Minimizing movements for mean curvature flow of droplets with prescribed contact angle. Journal de Mathématiques Pures et Appliquées [Internet]. 2018 ;117:1 - 58. Available from: http://www.sciencedirect.com/science/article/pii/S0021782418300825
. Minimizing Movements for Mean Curvature Flow of Partitions. SIAM Journal on Mathematical Analysis [Internet]. 2018 ;50:4117-4148. Available from: https://doi.org/10.1137/17M1159294
. Model order reduction of parameterized systems (MoRePaS): Preface to the special issue of advances in computational mathematics. Advances in Computational Mathematics. 2015 ;41:955–960.
. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. [Internet]. 2004 ;56:1011–1046. Available from: https://doi.org/10.1016/j.na.2003.11.001
. Mixed correlation functions of the two-matrix model. J. Phys. A. 2003 ;36:7733–7750.
. The Malgrange form and Fredholm determinants. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2017 ;13:Paper No. 046, 12. Available from: http://dx.doi.org/10.3842/SIGMA.2017.046
. Massless scalar field in a two-dimensional de Sitter universe. In: Rigorous quantum field theory. Vol. 251. Rigorous quantum field theory. Basel: Birkhäuser; 2007. pp. 27–38.
. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from: http://dx.doi.org/10.1007/s00220-017-2895-9
.