we introduce a method to recover the reduced pressure for Reduced Order Models (ROMs) of incompressible flows. The pressure is obtained as the least-squares minimum of the residual of the reduced velocity with respect to a dual norm. We prove that this procedure provides a unique solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable. We also prove that the proposed method is equivalent to solving the reduced mixed problem with reduced velocity basis enriched with the supremizers of the reduced pressure gradients. Optimal error estimates for the reduced pressure are obtained for general incompressible flow equations and specifically, for the transient Navier-Stokes equations. We also perform some numerical tests for the flow past a cylinder and the lid-driven cavity flow which confirm the theoretical expectations, and show an improved convergence with respect to other pressure recovery methods

## Least-squares pressure recovery in Reduced Order Methods for incompressible flows

Research Group:

Speaker:

Prof. Majdi Azaiez

Institution:

University of Bordeaux, France

Schedule:

Wednesday, November 15, 2023 - 15:00

Location:

A-004

Abstract: